欢迎来到天天文库
浏览记录
ID:56623398
大小:133.50 KB
页数:2页
时间:2020-06-30
《八年级数学上册 14 勾股定理 课题 反证法学案 (新版)华东师大版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题 反证法【学习目标】1.掌握反证法的定义;2.理解并掌握反证法证明命题的一般步骤;3.会利用反证法证明简单命题.【学习重点】体会反证法证明命题的思路方法,掌握反证法证明命题的步骤;【学习难点】用反证法证明简单的命题.行为提示:创设问题情境导入,激发学生求知欲望.行为提示:认真阅读课本,独立完成“自学互研”中的题目.自主的完成有关的练习,并在练习中发现规律,从猜测到探索到理解知识.情景导入 生成问题回顾:根据等腰三角形的性质,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明吗?在△ABC中,已知∠B≠∠
2、C,此时AB,AC要么相等,要么不相等.我们可以假设AB=AC,那么根据等边对等角定理可以得到∠B=∠C,但已知条件是∠B≠∠C,所以这与已知条件相矛盾,因此AB≠AC.自学互研 生成能力阅读教材P114~P115,完成下面的内容:问题:在△ABC中,AB=c,BC=a,AC=b,如果∠C≠90°,请问结论a2+b2≠c2成立吗?请说明理由.探究:假设a2+b2=c2,由勾股定理可知△ABC是直角三角形,且∠C=90°,这与已知条件∠C≠90°矛盾.假设不成立,从而说明原结论a2+b2≠c2成立.归纳:从命题结论的反面出发,引出矛盾,从而证明原命题成立,这样的
3、证明方法叫做反证法.反证法证明命题的一般步骤:(1)假设命题的结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确.范例:在△ABC中,AB≠AC,求证:∠B≠∠C.证明:假设∠B=∠C,则AB=AC.这与已知AB≠AC矛盾,假设不成立.∴∠B≠∠C.变例:用反证法证明:等腰三角形的底角是锐角.证明:假设等腰三角形两底角不是锐角,则有两种情况:(1)当两底角都是直角时,此时三内角的和大于180°,这与三角形的内角和等于180°矛盾,所以两底角都是直角不成立;(2)当两底角都是钝角时,此时三内
4、角的和大于180°,这与三角形的内角和等于180°矛盾,所以两底角都是钝角不成立.∴等腰三角形的底角都是锐角.归纳:(1)根据假设推出结论除了可以与已知条件矛盾以外,还可以与我们学过的定理、公理矛盾;(2)用反证法证明命题时,应注意的事项:①周密考查原命题结论的否定事项,防止否定不当或有所遗漏;②推理过程必须完整,否则不能说明命题的真伪性;③在推理过程中,要充分使用已知条件,否则推不出矛盾,或者不能断定推出的结果是错误的.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通
5、过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”. 行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.知识模块一 探究反证法的定义以及用反证法证明命题的步骤知识模块二 用反证法证明简单的定理检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺
6、1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________
此文档下载收益归作者所有