欢迎来到天天文库
浏览记录
ID:56540537
大小:563.51 KB
页数:16页
时间:2020-06-27
《2020年高考数学(理)热点·重点·难点专练3 函数及其性质(解析版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、热点03函数及其性质【命题趋势】纵观高中数学,函数贯穿于整个数学内容,是学生最头疼的内容,也会高考当中最能拉开分值的考点,占有的分数比重比较高.内容量比较大,近年以及之后的理科数学高考中,函数奇偶性,零点问题,恒成立问题,周期性问题以及单调性问题是高考函数中的核心.容易把具体函数与相应的性质相结合.通过列举了高考数学高频率考点,组合成了本专题,通过本函数及性质的专题的学习,让你对高中数学函数及其性质部分有充分的的理解,在以后遇到高考中的高频题型能够快速找到最佳解法.【考查题型】选择题,填空题【满
2、分技巧】图像题是高考数学中函数及其性质高考必考题型,第一种解法三步走,第一步奇偶性判定,第二步单调性的判定,第三步特殊值的带入.第二种解法:也是三步走,第一步奇偶性判定,第二步特殊值带入.第三步特殊值带入.零点问题是近几年高考常考题目,此类题目务必采用数形结合.将复杂函数分割化,从而求出对应函数的交点问题.对于恒成立问题一般采用函数单调性的方法去做.恒成立则小于等于函数最小值,恒成立,则大于等于函数最大值,对于存在使的成立,则大于函数最小值.对于选择题则可以采用特殊值代入法以及图像法去简化运算.
3、恒成立问题另外注意问题是双变量问题,双变量问题一般是指的是两个未知数相互不影响,即若恒成立,只要满足定义域范围内最小值大于最大值即可.分段函数单调性问题是简单题目也是最容易出错的问题,一般容易遗漏边界点.采用特殊值代入法时应采用多次带入方不会出错.函数及其性质一般会放在选择题的最后四题左右,相对来说比较难,在常规方法的同时应注意特殊点代入,抽象函数具体化.,数形结合思想,化归思想.【常考知识】基本函数图像变换,奇偶性应用,周期性应用,单调性,不等式问题.【限时检测】(建议用时:60分钟)1.(2
4、019·全国高考真题(理))函数在的图像大致为A.B.C.D【答案】D【解析】由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.设,则,所以是奇函数,图象关于原点成中心对称,排除选项B.又排除选项C,,排除选项A,故选D.【名师点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性
5、,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象2.(2017·全国高考真题(理))函数在单调递增,且为奇函数,若,则满足的的取值范围是().A.B.C.D.【答案】D【解析】是奇函数,故;又是增函数,,即则有,解得故选D.【名师点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.3.(2018·全国高考真题(理))已知是定义域为的奇函数,满足.若,则()A.B.C.D.【答案】C【解析】
6、分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因,因为,所以,,,选C.【名师点睛】:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.4.(2019·全国高考真题(理))设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是A.B.C.D.【答案】B【解析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解
7、析式,分析出临界点位置,精准运算得到解决.【详解】时,,,,即右移1个单位,图像变为原来的2倍.如图所示:当时,,令,整理得:,(舍),时,成立,即,,故选B.【名师点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.5.(2018·重庆高考模拟(理))已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为( )A.
8、{1,3}B.{-3,-1,1,3}C.{2-,1,3}D.{-2-,1,3}【答案】D【解析】首先根据是定义在上的奇函数,求出函数在上的解析式,再求出的解析式,根据函数零点就是方程的解,问题得以解决.【详解】∵是定义在上的奇函数,当x时,,令,则,,令,当时,,解得,当时,,解得∴函数的零点的集合为.故选:D.【名师点睛】本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.属中档题.6.(2019·济南市历城第二中学高考模拟(理))已知函数f(x)=2x+log2x,并且实数a>b>c
此文档下载收益归作者所有