欢迎来到天天文库
浏览记录
ID:56425027
大小:802.50 KB
页数:27页
时间:2020-06-18
《高二数学选修1椭圆的几何性质.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、椭圆的简单几何性质(1)复习:1.椭圆的定义:到两定点F1、F2的距离之和为常数(大于
2、F1F2
3、)的动点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:a2=b2+c2当焦点在X轴上时当焦点在Y轴上时二、椭圆简单的几何性质1、范围:-a≤x≤a,-b≤y≤b知椭圆落在x=±a,y=±b组成的矩形中oyB2B1A1A2F1F2cab椭圆的对称性YXOP(x,y)P1(-x,y)P2(-x,-y)2、对称性:oyB2B1A1A2F1F2cab从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x换成-x方程不变,图象关于y轴对称;(2)把y换成-y方程不变,图象关于
4、x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。3、椭圆的顶点令x=0,得y=?,说明椭圆与y轴的交点?令y=0,得x=?说明椭圆与x轴的交点?*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)123-1-2-3-44y123-1-2-3-44y12345-1-5-2-3-4x12345-1-5-2-3-4x根据前面所学有关知识画出下列图形(1)(2)A1B1A2B2B2A2B1A1
5、4、椭圆的离心率离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:[2]离心率对椭圆形状的影响:06、x7、≤a,8、y9、≤b10、x11、≤b,12、y13、≤a关于x轴、y轴成轴对称;关于原点成中心对称。(a,0),(0,b)(b,0),(0,a)(c,0)(0,c)长半轴长为a,短半轴长为b.焦距为2c;a2=b2+c2xy0xy0例1;求椭圆9x2+14、16y2=144的长半轴、短半轴长、离心率、焦点、顶点坐标,并画出草图。已知椭圆方程为6x2+y2=6它的长轴长是:。短轴长是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。2练习1.练习:已知椭圆方程为16x2+25y2=400,它的长轴长是:。短轴长是:。焦距是:。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。108680解题的关键:1、将椭圆方程转化为标准方程明确a、b2、确定焦点的位置和长轴的位置练习3:在下列每组椭圆中,哪一个更接近于圆?①9x2+y2=36与x2/16+y2/12=1;x2/16+y2/12=1②x2+9y2=36与x15、2/6+y2/10=1x2/6+y2/10=1练习3:1.椭圆的长短轴之和为18,焦距为6,则椭圆的标准方程为()2、下列方程所表示的曲线中,关于x轴和y轴都对称的是()A、X2=4YB、X2+2XY+Y=0C、X2-4Y2=XD、9X2+Y2=4CD例2.过适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于.解:(1)由题意,,又∵长轴在轴上,所以,椭圆的标准方程为.(2)由已知,,∴,,∴,所以椭圆的标准方程为或.例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。答案:分类讨论的数学思想例4:例2解答方法1.用相似16、三角形。2.用点到直线距离。3.用等面积法。练习4:1、若椭圆的焦距长等于它的短轴长,则其离心率为。2、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心率为。3、若椭圆的的两个焦点把长轴分成三等分,则其离心率为。4、若某个椭圆的长轴、短轴、焦距依次成等差数列,则其离心率e=__________5、若某个椭圆的长轴、短轴、焦距依次成等比列,则其离心率e=__________(±a,0)a(0,±b)b(-a,0)a+c(a,0)a-c6、例5.如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)F2为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B17、距地面2348km.并且F2、A、B在同一直线上,地球半径约为6371km,求卫星运行的轨道方程(精确到1km).地球例5.如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)F2为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B距地面2348km.并且F2、A、B在同一直线上,地球半径约为6371km,求卫星运行的轨道方程(精确到1km).XOF1F2
6、x
7、≤a,
8、y
9、≤b
10、x
11、≤b,
12、y
13、≤a关于x轴、y轴成轴对称;关于原点成中心对称。(a,0),(0,b)(b,0),(0,a)(c,0)(0,c)长半轴长为a,短半轴长为b.焦距为2c;a2=b2+c2xy0xy0例1;求椭圆9x2+
14、16y2=144的长半轴、短半轴长、离心率、焦点、顶点坐标,并画出草图。已知椭圆方程为6x2+y2=6它的长轴长是:。短轴长是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。2练习1.练习:已知椭圆方程为16x2+25y2=400,它的长轴长是:。短轴长是:。焦距是:。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。108680解题的关键:1、将椭圆方程转化为标准方程明确a、b2、确定焦点的位置和长轴的位置练习3:在下列每组椭圆中,哪一个更接近于圆?①9x2+y2=36与x2/16+y2/12=1;x2/16+y2/12=1②x2+9y2=36与x
15、2/6+y2/10=1x2/6+y2/10=1练习3:1.椭圆的长短轴之和为18,焦距为6,则椭圆的标准方程为()2、下列方程所表示的曲线中,关于x轴和y轴都对称的是()A、X2=4YB、X2+2XY+Y=0C、X2-4Y2=XD、9X2+Y2=4CD例2.过适合下列条件的椭圆的标准方程:(1)经过点、;(2)长轴长等于,离心率等于.解:(1)由题意,,又∵长轴在轴上,所以,椭圆的标准方程为.(2)由已知,,∴,,∴,所以椭圆的标准方程为或.例3.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。答案:分类讨论的数学思想例4:例2解答方法1.用相似
16、三角形。2.用点到直线距离。3.用等面积法。练习4:1、若椭圆的焦距长等于它的短轴长,则其离心率为。2、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心率为。3、若椭圆的的两个焦点把长轴分成三等分,则其离心率为。4、若某个椭圆的长轴、短轴、焦距依次成等差数列,则其离心率e=__________5、若某个椭圆的长轴、短轴、焦距依次成等比列,则其离心率e=__________(±a,0)a(0,±b)b(-a,0)a+c(a,0)a-c6、例5.如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)F2为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B
17、距地面2348km.并且F2、A、B在同一直线上,地球半径约为6371km,求卫星运行的轨道方程(精确到1km).地球例5.如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)F2为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B距地面2348km.并且F2、A、B在同一直线上,地球半径约为6371km,求卫星运行的轨道方程(精确到1km).XOF1F2
此文档下载收益归作者所有