资源描述:
《八年级数学上册 14 实数教学案 冀教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十四章 实 数1.了解算术平方根、平方根、立方根的概念,会用根号表示平方根、算术平方根、立方根.2.会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求数的平方根与立方根.3.了解无理数和实数的概念,了解实数与数轴上的点的一一对应关系.4.了解在实数范围,相反数、倒数和绝对值的意义.5.会进行实数大小的比较和实数的近似计算.6.能用有理数估计一个无理数的大致范围.1.类比有理数的有关概念和运算律来学习实数,体现了知识的前后联系以及数系发展的规律.2.让学生感受现实生活中存在无理数,从而认识到学习无理数的必要性.1.通过探究活动,培养学
2、生探求知识的欲望,让学生体验成功的乐趣.2.鼓励学生积极大胆地发表自己的意见,增加学生的自我意识和集体责任感.本章的主要内容是平方根、立方根的概念及其求法,实数的概念及其性质,近似数的概念及其应用.本章通过数的开方引入无理数的概念,进而将数的范围从有理数扩充到实数,并说明实数和数轴上的点一一对应.教材从实际问题出发,用图形拼接的问题引入实数,让学生认识到数系的发展和扩充是现实生活的需要,同时也是数学发展的必然规律.学习本章之后,数的范围扩充到了实数,今后若无特别说明,所研究的数与代数的内容(一元一次不等式、二次根式、函数等)一般都在实数范围内进行.因此,本章内
3、容是学习后继内容的前提和基础,对于发展学生的数感、用数学思想理解和解释现实问题、提高学生的数学素养有着重要的意义.另外,本章是中考的重要内容,常考的考点有求一个非负数的算术平方根、平方根的概念和性质、立方根的意义及运算、比较两个实数的大小、无理数的识别等.题型以填空题、选择题为主,也有与其他知识相综合的解答题,一般难度不大.【重点】1.平方根、算术平方根的意义,立方根的意义.2.无理数的意义以及实数的概念.【难点】1.平方根、算术平方根的概念,二者之间的区别和联系.2.实数的概念.1.概念的形成过程也是一个思考的过程,所以要关注学生对概念的理解和认识,引导学生
4、积极参与探究活动,经历归纳概括、发现新知的过程,逐步提高学生的思维水平.2.关注学生的探究和发现过程,在学生独立思考的基础上,鼓励学生在小组间通过合作与交流的方式解决问题.3.注意知识间的相互联系和区别,实数的概念、运算法则、运算律等,都可以通过类比有理数来获得,这样能较好地体现新旧知识的联系.如实数的绝对值、相反数和倒数等概念都是类比有理数直接得出的.同时,也要注意到它们之间的区别,如无理数是无限不循环小数,而有理数是有限小数或无限循环小数,有理数和数轴上的点不是一一对应的,而实数和数轴上的点是一一对应的等.4.教师在学生活动的过程中,要鼓励学生积极大胆地发
5、表自己的意见,特别是学生与众不同的意见,要有意识地培养学生求异思维的能力和不断创新的欲望.5.在解决实际问题的过程中,如果遇到复杂的计算问题,应允许学生用计算器进行计算.6.在进行实数的大小比较以及用有理数估计无理数的范围等问题中,要控制好问题的难度,不要超出教材的要求.14.1平方根2课时14.2立方根1课时14.3实 数3课时14.4近似数1课时14.5用计算器求平方根与立方根1课时回顾与反思1课时14.1 平方根1.了解一个数的平方根、算术平方根及开平方的意义.2.会用根号表示一个数的平方根、算术平方根.1.通过探究,了解开平方与平方是互逆运算.2.会利
6、用这个互逆运算关系求某些非负数的平方根和算术平方根.通过学习,体验数学知识来源于实践,是由于生活或生产的需要而产生、发展的.【重点】 平方根、算术平方根的概念及求法.【难点】 有关平方根、算术平方根的运算以及它们的区别与联系.第课时1.能说出平方根的概念,会用根号表示一个数的平方根.2.知道开平方与平方是互逆运算,会利用这个互逆运算关系求某些非负数的平方根.3.知道±表示的是非负数a的平方根.在学习开平方运算求一个数的平方根的过程中,体会开平方运算与平方运算之间的互逆关系.1.通过探究学习,使学生进一步感受到所学数学知识之间的内在联系.2.培养学生发现问题、归
7、纳结论、应用新知的意识,培养学生学数学、爱数学的良好情感.【重点】 平方根、算术平方根的概念及求法.【难点】 有关平方根、算术平方根的运算以及它们的区别与联系.【教师准备】 课件1~7.【学生准备】 平方的相关计算.导入一:我们学习了有理数的加、减、乘、除和乘方的运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的.例如:小明家有一块面积为100m2的正方形花圃.花圃周围要用护栏围起来,需要护栏多少米?解决这个问题就要运用一种新的运算,这种运算叫做开平方.这节课我们就要学习开平方运算和平方根.[设计意图] 新课程数学课堂强调,从学生已有的经验出发,让学生
8、亲身经历将实际问题抽象成数学模型并解释