2017-2018版高中数学 第二章 推理与证明 2.2.2 反证法学案 新人教A版选修1-2.doc

2017-2018版高中数学 第二章 推理与证明 2.2.2 反证法学案 新人教A版选修1-2.doc

ID:56402920

大小:368.50 KB

页数:11页

时间:2020-06-23

2017-2018版高中数学 第二章 推理与证明 2.2.2 反证法学案 新人教A版选修1-2.doc_第1页
2017-2018版高中数学 第二章 推理与证明 2.2.2 反证法学案 新人教A版选修1-2.doc_第2页
2017-2018版高中数学 第二章 推理与证明 2.2.2 反证法学案 新人教A版选修1-2.doc_第3页
2017-2018版高中数学 第二章 推理与证明 2.2.2 反证法学案 新人教A版选修1-2.doc_第4页
2017-2018版高中数学 第二章 推理与证明 2.2.2 反证法学案 新人教A版选修1-2.doc_第5页
资源描述:

《2017-2018版高中数学 第二章 推理与证明 2.2.2 反证法学案 新人教A版选修1-2.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.2 反证法1.了解间接证明的一种基本方法——反证法.2.了解反证法的思考过程、特点,理解反证法的推理过程,证明步骤.(重点)3.体会直接证明与间接证明的区别与联系,会用反证法证明数学问题.(难点、易混点)[基础·初探]教材整理 反证法阅读教材P42~P43的内容,完成下列问题.1.反证法的定义假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.反证法常见的矛盾类型反证法的关键是在正确的推理下得

2、出矛盾.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、定理、公理、事实矛盾等.判断(正确的打“√”,错误的打“×”)(1)反证法属于间接证明问题的方法.(  )(2)反证法的证明过程既可以是合情推理也可以是一种演绎推理.(  )(3)反证法推出的矛盾不能与已知相矛盾.(  )【解析】 (1)正确.反证法其实是证明其逆否命题成立,所以它属于间接证明问题的方法.(2)错误.反证法从证明过程看是一种严谨的演绎推理.(3)错误.反证法推出的矛盾可以与已知相矛盾.【答案】 (1)√ (2)× (3)×

3、[小组合作型]用反证法证明否定性命题 等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.(1)求数列{an}的通项an与前n项和Sn;(2)设bn=(n∈N*),求证:数列{bn}中任意不同的三项都不可能成为等比数列.【精彩点拨】 第(1)问应用an=a1+(n-1)d和Sn=na1+n(n-1)d两式求解.第(2)问先假设存在三项bp,bq,br成等比数列,再用反证法证明.【自主解答】 (1)设等差数列{an}的公差为d,由已知得∴d=2,故an=2n-1+,Sn=n(n+).(2)证明

4、:由(1)得bn==n+.假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则b=bpbr,即(q+)2=(p+)(r+),∴(q2-pr)+(2q-p-r)=0.∵p,q,r∈N*,∴∴2=pr,(p-r)2=0,∴p=r,这与p≠r矛盾.所以数列{bn}中任意不同的三项都不可能成为等比数列.1.当结论中含有“不”“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适合应用反证法.例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾.2.反证法必须

5、从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.3.常见否定词语的否定形式如下表所示:否定词语否定词语的否定形式没有有不大于大于不等于等于不存在存在[再练一题]1.已知方程f(x)=ax+(a>1),证明:方程f(x)=0没有负数根.【解】 假设x0是方程f(x)=0的负数根,则x0<0,x0≠-1且ax0+=0,所以ax0=-.又当x0<0时,0

6、2.这与x0<0矛盾,所以假设不成立,故方程f(x)=0没有负数根.用反证法证明“至多、至少”问题 已知x,y,z均大于零,求证:x+,y+,z+这三个数中至少有一个不小于4.【精彩点拨】 本题中含有“至少”,不宜直接证明,故可采用反证法证明.【自主解答】 假设x+,y+,z+都小于4,即x+<4,y+<4,z+<4,于是得++<12,而++=++≥2+2+2=12,这与++<12矛盾,因此假设错误,即x+,y+,z+中至少有一个不小于4.1.用反证法证明“至少”“至多”型命题,可减少讨论情况,目标

7、明确.否定结论时需弄清楚结论的否定是什么,避免出现错误.2.用反证法证明“至多、至少”问题时常见的“结论词”与“反设词”如下:结论词反设词结论词反设词至少有一个一个也没有对所有x成立存在某个x0不成立至多有一个至少有两个对任意x不成立存在某个x0成立至少有n个至多有n-1个p或q綈p且綈q至多有n个至少有n+1个p且q綈p或綈q[再练一题]2.若x>0,y>0,且x+y>2,求证:与至少有一个小于2.【导学号:】【证明】 假设与都不小于2,即≥2,≥2.∵x>0,y>0,∴1+y≥2x,1+x≥2y

8、,两式相加得2+(x+y)≥2(x+y).∴x+y≤2,这与已知中x+y>2矛盾.∴假设不成立,原命题成立.故与至少有一个小于2.[探究共研型]用反证法证明“唯一性”命题探究1 用反证法证明命题:“过已知直线a外一点A有且只有一条直线b与已知直线a平行”的过程归纳为以下三个步骤:①因为b∥a,由平行公理知b′∥b.这与假设b∩b′=A矛盾,所以假设错误.原命题成立;②由两条直线平行的定义可知,过点A至少有一条直线与直线a平行;③假设过点A还有一条直线b′与已知直线a平

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。