欢迎来到天天文库
浏览记录
ID:56386362
大小:3.29 MB
页数:33页
时间:2020-06-14
《斐波拉契数列与黄金分割.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、斐波拉契数列与黄金分割出生:1170,比萨逝世:1240,比萨职业:数学家,作者宗教:天主教住址:意大利,比萨斐波那契数列指的是这样一个数列1,1,2,3,5,8,13,21,34,55,89,144,...这个数列从第三项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(LeonardoFibonacci),生于公元1170年,卒于1240年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(LiberAbacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点
2、相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618.(或者说后一项与前一项的比值小数部分越来越逼近黄金分割0.618、前一项与后一项的比值越来越逼近黄金分割0.618)自然界中巧合斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝
3、同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……其中百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种
4、子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数0.618033989……的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。1922年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持最低能量的状态下,花朵会以菲波那契数列长出花瓣。影视
5、作品中的斐波那契数列斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法。类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有
6、多少种?斐波拉契数列的部分性质:数学课可以是美的过程。比如说“山穷水尽疑无路,柳暗花明又一村”这两句诗,很美吧?你怎么理解这种美?这在数学上是太常见了,在你解题解得山穷水尽的时候,忽然茅塞顿开,体验一种顿悟的感觉,这就是那两句诗的意境。还有这句:“淘尽黄沙始到金,苦到尽头方知甜”。这是诗的境界,也是数学的境界,还有一种哲学之美在里面。这句诗是中学生活的写照。学习的过程就是一个苦尽甘来的过程,如果你更多的感受到学业的艰苦,正说明你的“苦”吃得还不够,还没有到“甘”来的境界。
此文档下载收益归作者所有