资源描述:
《高中数学 导数的应用—函数的极值课件 新人教A版选修2.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、导数的应用—函数的极值利用函数的导数判断函数的单调性的基本步骤为:①求函数的定义域;②求函数的导数;③解不等式>0得f(x)的单调递增区间;解不等式<0得f(x)的单调递减区间.0x2y观察函数y=2x3-6x2+7的图象,从图象我们可以发现:函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(2)是函数的一个极小值。前课复习一般地,设函数y=f(x)在x0及其附近有定义,如果f(x0)的值比x0附近所有各点的函数值都大,我们说f(
2、x0)是函数y=f(x)的一个极大值;如果f(x0)的值比x0附近所有各点的函数值都小,我们说f(x0)是函数y=f(x)的一个极小值.极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是对应的函数值.新課教學oaX1X2X3X4bxy从前面的图像中我们可以发现以下几点:(1)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小.也就是说极值与最值是两个不同的概念.(2)函数的极值不是唯一的.即一个函数在某区间
3、上或定义域内极大值或极小值可以不止一个.(3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.新課教學在前课中,我们利用函数的导数来研究函数的单调性.下面我们利用函数的导数来研究函数的极值问题.由上图可以看出,在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有.但反过来不一定.如函数y=x3,在x=0处,曲线的切线是水平的,但这点的函数值既不比它附近的点的函数
4、值大,也不比它附近的点的函数值小.假设x0使.那么在什么情况下x0是f(x)的极值点呢?oaX1X2X3X4baxy新課教學oaX00bxyoaX0bxy如上左图所示,若x0是f(x)的极大值点,则x0两侧附近点的函数值必须小于f(x0).因此,x0的左侧附近f(x)只能是增函数,即;x0的右侧附近f(x)只能是减函数,即同理,如上右图所示,若x0是f(x)极小值点,则在x0的左侧附近f(x)只能是减函数,即;在x0的右侧附近只能是增函数,即.新課教學从而我们得出结论:若x0满足,且在x0的两侧的导数异号,则x0是f(x)
5、的极值点,f(x0)是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.一般地,当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方法是:(1):如果在x0附近的左侧那么,f(x0)是极大值;(2):如果在x0附近的左侧那么,f(x0)是极小值.新課教學要注意的是:(1)不可导函数也可能有极值点.例如函数y=
6、x
7、,它在点x=0处不可导,但x=0是函数的极小值点.故函数f(x)在极值点处不一定存
8、在导数.(2)可导函数的极值点一定是它导数为零的点,反之函数的导数为零的点,不一定是该函数的极值点.例如,函数y=x3,在点x=0处的导数为零,但它不是极值点,原因是函数在点x=0处左右两侧的导数都大于零.因此导数为零的点仅是该点为极值点的必要条件,其充分条件是在这点两侧的导数异号.因此,利用求导的方法,求函数的极值时,在函数的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点,这两类点构成了函数定义域内所有的可能取到极值的“可疑点”.新課教學例:求y=x3/3-4x+4的
9、极值.解:令,解得x1=-2,x2=2.当x变化时,,y的变化情况如下表:x(-∞,-2)-2(-2,2)2(2,+∞)y’+0-0+y↗极大值28/3↘极小值-4/3↗因此,当x=-2时有极大值,并且,y极大值=28/3;而,当x=2时有极小值,并且,y极小值=-4/3.例题讲解总结:求可导函数f(x)的极值的步骤如下:(1).求导数(2).求方程的根.(3)检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左正右负,那么f(x)在这个根处取得极大值.新課教學x(-∞,-a)-a(-a,0)
10、(0,a)a(a,+∞)f’(x)+0--0+f(x)↗极大值-2a↘↘极小值2a↗故当x=-a时,f(x)有极大值f(-a)=-2a;当x=a时,f(x)有极小值f(a)=2a.说明:本题中的极大值是小于极小值的,这充分表明极值与最值是完全不同的两个概念.例:求函数的极值.解:函数的定义域为令,解得x