怎样证明两线段相等和两角相.doc

怎样证明两线段相等和两角相.doc

ID:56241810

大小:300.50 KB

页数:14页

时间:2020-06-21

怎样证明两线段相等和两角相.doc_第1页
怎样证明两线段相等和两角相.doc_第2页
怎样证明两线段相等和两角相.doc_第3页
怎样证明两线段相等和两角相.doc_第4页
怎样证明两线段相等和两角相.doc_第5页
资源描述:

《怎样证明两线段相等和两角相.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、怎样证明两线段相等与两角相等【重点解读】证明两线段相等或两角相等是中考命题中常见的一种题型,主要考查学生的分析问题能力、逻辑思维能力与推理能力,其综合证明难度有所降低,但增加了探索的思维过程.解决此类问题的关键是:正确运用所学几何概念、公理、定理、性质、判定,正确添加辅助线,进行几何证明的叙述.⒈怎样证明两线段相等证明两线段相等的常用方法和涉及的定理、性质有:⑴三角形①两线段在同一三角形中,通常证明等角对等边;②证明三角形全等:全等三角形的对应边相等,全等形包括平移型、旋转型、翻折型;③等腰三角形顶角的平分线或底边上的高平分底边;④线段中垂线性质:线段垂直平分线

2、上的点到这条线段的两个端点的距离相等;⑤角平分线性质:角平分线上的点到这个角两边的距离相等;⑥过三角形一边的中点平行于另一边的直线必平分第三边;⑵证特殊四边形①平行四边形的对边相等、对角线互相平分;②矩形的对角线相等,菱形的四条边都相等;③等腰梯形两腰相等,两条对角线相等;⑶圆①同圆或等圆的半径相等;②圆的轴对称性(垂径定理及其推论):垂直于弦的直径平分这条弦;平分弦所对的一条弧的直径垂直平分这条弦;③圆的旋转不变性:在同圆或等圆中,如果两个圆心角、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等;④从圆外一点引圆的两条切线,它们的切线长相

3、等;⑷等量代换:若a=b,b=c,则a=c;等式性质:若a=b,则a-c=b-c;若,则a=b.此外,也有通过计算证明两线段相等,有些条件下可以利用面积法、相似线段成比例的性质等证明线段相等.⒉怎样证明两角相等证明两角相等的方法和涉及的定理、性质有:⑴同角(或等角)的余角、补角相等;⑵证明两直线平行,同位角、内错角相等;⑶到角的两边距离相等的点,在这个角的平分线上;⑷全等三角形、相似三角形的对应角相等;⑸同一三角形中,等边对等角,等腰三角形三线合一;⑹平行四边形的对角相等;等腰梯形同一底上的两个角相等;⑺同圆中,同弧或等弧所对的圆周角、圆心角相等;⑻弦切角等于它

4、所夹的弧所对的圆周角;⑼从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角;⑽圆的内接四边形的一个外角等于它的内对角;⑾通过计算证明两角相等;⑿等量代换,等式性质.【典题精析】例1已知:如图,分别延长菱形ABCD的边AB、AD到点E、F,使得BE=DF,连结EC、FC.求证:EC=FC.总结:通过证三角形全等来证明两线段(或两角)相等是常用的方法,关键是根据已知条件及图形找到对应的三角形和满足全等的条件,图形有的翻折全等,有的旋转全等,有的平移全等,有的是三者的综合形式,该问题是翻折型全等.例2已知:AB是⊙O的直径,C是⊙O上一点,连接AC,过点

5、C作直线CD⊥AB于点D,E是AB上一点,直线CE与⊙O交于点F,连结AF,与直线CD交于点G.求证:⑴∠ACD=∠F;⑵AC2=AG·AF.总结:证明线段相等或角相等时,如果没有三角形全等,我们常找与它们都相关或都有联系的线段或角作为桥梁,实现线段之间的转化或角之间的转化,从而证明它们的等量关系.直角三角形的母子三角形中相等的角、成比例的线段要熟悉.例3已知:如图,四边形ABCD内接于⊙O,过点A的切线与CD的延长线交于E,且∠ADE=∠BDC.⑴求证:△ABC为等腰三角形;⑵若AE=6,BC=12,CD=5,求AD的长.例4已知:如图,正△ABC的边长为a,

6、D为AC边上的一个动点,延长AB至E使BE=CD,连结DE,交BC于点P.⑴求证:DP=PE;⑵若D为AC的中点,求BP的长.总结:添加辅助线是几何证明和计算中常用的方法,通常有作平行线、作垂线、连结两点、延长线段相交等,正确添加辅助线是解决问题的关键.思考:若将条件正△ABC改为等腰△ABC,AB=AC,结论DP=PE是否仍成立?若将条件正△ABC改为等腰△ABC,CA=CB,结论DP=PE是否仍成立?例5已知:△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足,求证:⑴G是CE的中点;⑵∠B=2∠BCE.总结:直角三角形、等腰三角形等特殊三角

7、形,其特殊性质有:直角三角形斜边上的中线等于斜边的一半;等腰三角形三线合一的性质通常有以下变形形式:已知等腰和高、已知顶角平分线和高、已知等腰和底边中线.特殊三角形与线段和角的相等、线段和角的倍半关系有着密切关系.例6如图,⊙O的内接△ABC的外角∠ACE的平分线交⊙O于点D,DF⊥AC,垂足为F,DE⊥BC,垂足为E,给出下列4个结论:①CE=CF;②∠ACB=∠EDF;③DE是⊙O的切线;④=;其中一定成立的是()A.①②③B.②③④C.①③④D.①②④总结;一般的,证明线段相等或角相等,可根据条件寻找三角形,证三角形全等;无三角形全等时,可找与之相关连的线

8、段或角,探索等量关系;证

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。