欢迎来到天天文库
浏览记录
ID:55736256
大小:307.50 KB
页数:18页
时间:2020-06-03
《四川2016中考模拟卷超详解析73套2015年四川省成都七中中考数学模拟试卷 二 .doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2015年四川省成都七中中考数学模拟试卷(二) 一、选择题:(每小题3分,共30分)1.(3分)﹣2的负倒数是( )A.﹣2B.2C.﹣D.2.(3分)据测算,我国每天因土地沙漠化造成的经济损失平均为150000000元,若不加治理,一年按365天计,我国一年中因土地沙漠化造成的经济损失(用科学记数法表示)为( )A.5.475×107元B.5.475×109元C.5.475×1010元D.5.475×1011元3.(3分)若不等式的解集是x>a,则a的取值范围是( )A.a<3B.a=3C.a>3D.a≥34.(3分)若3x
2、+2y=0,则代数式的值为( )A.1B.﹣1C.﹣D.不能确定5.(3分)一元二次方程x2﹣2x﹣3=0的两个根分别为( )A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣36.(3分)已知a、b都是实数,且b,化简•+1的结果是( )A.2B.﹣2C.1D.37.(3分)若方程组的解x与y的和为0,则m的值为( )A.﹣2B.0C.2D.48.(3分)如果x1,x2是两个不相等的实数,且满足x12﹣2x1=1,x22﹣2x2=1,那么x1•x2等于( )A.2B.﹣2C.1
3、D.﹣19.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=010.(3分)关于x的方程=1的解是正数,则a的取值范围是( )A.a>﹣1B.a>﹣1且a≠0C.a<﹣1D.a<﹣1且a≠﹣2 二、填空题:(每小题4分,共24分)11.(4分)因式分解:3y2x﹣12x= .
4、12.(4分)不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是 .13.(4分)已知关于x的方程10x2﹣(m+3)x+m﹣7=0,若有一个根为0,则m= ,这时方程的另一个根是 .14.(4分)已知关于x的方程x2﹣3x+m=0的一个根是另一个根的2倍,则m的值为 .15.(4分)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α= .16.(4分)如图,直线AB切⊙O于点C,D是⊙O上
5、一点,∠EDC=30°,弦EF∥AB,连接OC交EF于点H,连接CF,且CF=2,则EF的长为 . 三、解答题:17.(18分)(1)计算:()﹣1+16÷(﹣2)3+(2015﹣)0﹣tan60°;(2)解方程:(2x﹣3)2=(3x﹣2)2;(3)先化简,再求值:,其中x=1,y=.18.(10分)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.19.(8分)如图,8块相同的长方形地砖拼成
6、一个长方形,每块长方形地砖的长和宽分别是多少?20.(10分)将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.(1)如图1,若∠ABC=α=60°,BF=AF.①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示). 一、填空题:(每小题4分,共12分)21.(4分)已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为 .22.(4分)如图,AB是⊙O的直径,弦AD、BC
7、相交于点E,若CD=5,AB=13,则sin∠BED= .23.(4分)如图,矩形AOBC的两边OC、OA分别位于x轴、y轴上,点B的坐标为(﹣,2),D是CB边上的一点,将△CDO沿直线OD翻折,使C点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是 . 二、(8分)解答题:(认真思考,你会发现并不困难!)24.(8分)如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2﹣4x+3=0的两根,且∠DAB=45
8、°.(1)求抛物线对应的二次函数解析式;(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值. 2015年
此文档下载收益归作者所有