高考专项训练13:理科导数专项训练.doc

高考专项训练13:理科导数专项训练.doc

ID:55634385

大小:606.50 KB

页数:29页

时间:2020-05-21

高考专项训练13:理科导数专项训练.doc_第1页
高考专项训练13:理科导数专项训练.doc_第2页
高考专项训练13:理科导数专项训练.doc_第3页
高考专项训练13:理科导数专项训练.doc_第4页
高考专项训练13:理科导数专项训练.doc_第5页
资源描述:

《高考专项训练13:理科导数专项训练.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一.解答题(共30小题)1.(2011•浙江)设函数f(x)=a2lnx﹣x2+ax,a>0.(Ⅰ)求f(x)的单调区间(Ⅱ)求所有的实数a,使e﹣1≤f(x)≤e2对x∈[1,e]恒成立.注:e为自然对数的底数.2.(2011•天津)已知a>0,函数f(x)=lnx﹣ax2,x>0.(f(x)的图象连续不断)(Ⅰ)求f(x)的单调区间;(Ⅱ)当时,证明:存在x0∈(2,+∞),使;(Ⅲ)若存在均属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明.3.(2011•陕西)设f(x)=lnx.g(x)=f(x)+f'(x

2、).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)求a的取值范围,使得g(a)﹣g(x)<对任意x>0成立.4.(2011•辽宁)已知函数f(x)=lnx﹣ax2+(2﹣a)x.(I)讨论f(x)的单调性;(II)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(III)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.5.(2011•辽宁)设函数f(x)=x+ax2+blnx,曲线,y=f(x)过P(1,0),且在P点处的切线率为2.(Ⅰ)求a,b的值

3、;(Ⅱ)证明:f(x)≤2x﹣2.6.(2011•湖北)(Ⅰ)已知函数f(x)=lnx﹣x+1,x∈(0,+∞),求函数f(x)的最大值;(Ⅱ)设a1,b1(k=1,2…,n)均为正数,证明:(1)若a1b1+a2b2+…anbn≤b1+b2+…bn,则…≤1;(2)若b1+b2+…bn=1,则≤…≤b12+b22+…+bn2.7.(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).(I)求实数b的值;(II)求函数f(x)的单调区间;(III)当a

4、=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.8.(2011•北京)已知函数f(x)=(x﹣k)ex.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.9.(2011•北京)已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤,求k的取值范围.10.(2011•安徽)设,其中a为正实数(Ⅰ)当a=时,求f(x)的极值点;(Ⅱ)若f(x)为R

5、上的单调函数,求a的取值范围.11.(2010•重庆)已知函数,其中实数a≠1.(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.12.(2010•陕西)已知函数f(x)=,g(x)=alnx,a∈R.(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;(2)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ.13.(2010•陕西)已知函数f(x)=,g(x)=alnx,a∈R,若曲线y=f

6、(x)与曲线y=g(x)相交,且在交点处有共同的切线,求a的值和该切线方程.14.(2010•山东)已知函数(a∈R).(Ⅰ)当时,讨论f(x)的单调性;(Ⅱ)设g(x)=x2﹣2bx+4.当时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.15.(2010•宁夏)设函数f(x)=ex﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围16.(2010•辽宁)已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(

7、Ⅱ)设a≤﹣2,证明:对任意x1,x2∈(0,+∞),

8、f(x1)﹣f(x2)

9、≥4

10、x1﹣x2

11、.17.(2010•辽宁)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),

12、f(x1)﹣f(x2)

13、≥4

14、x1﹣x2

15、,求a的取值范围.18.(2010•江西)设函数f(x)=lnx+ln(2﹣x)+ax(a>0).(1)当a=1时,求f(x)的单调区间.(2)若f(x)在(0,1]上的最大值为,求a的值.19.(2010•江苏)设f(x)是定义在区间(1

16、,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2﹣ax+1),则称函数f(x)具有性质P(a),设函数f(x)=,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。