资源描述:
《一元二次方程复习[2]》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二十二章一元二次方程复习www.czsx.com.cn本章知识网络概念:---一般形式:ax2+bx+c=0(a≠0)直接开平方法:x2=p(p≥0)(mx+n)2=p(p≥0)解法配方法一公式法:因式分解法:(ax+b)(cx+d)=0元判别式:b2-4ac=0判别式不解方程,判别方程根的情况,二用处求方程中待定常数的值或取值范围,进行有关的证明,次关系:x1+x2=-b/ax1..x2=c/a已知方程的一个根,求另一个根及字母的值,方根与系数的关系求与方程的根有关的代数式的值,用处求作一元二次方程,程已知两数的和与积,求此两数判断方程
2、两根的特殊关系,实际问题与一元二次方程:审,设,列.解,验,答,www.czsx.com.cn1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式一般地,任何一个关于x的一元二次方程都可以化为的形式,我们把(a,b,c为常数,a≠0)称为一元二次方程的一般形式。www.czsx.com.cn1.直接开平方法对于形如ax2=p(p≥0)或(mx+n)2=p(p≥o)的方程可以用直接开平方法解www.czsx.com.cn2.配方法用配方法解一元二次方程的步骤:1.化1:把二次项
3、系数化为1(方程两边都除以二次项系数);2.移项:把常数项移到方程的右边;3.配方:方程两边都加上一次项系数绝对值一半的平方;4.变形:方程左分解因式,右边合并同类;5.开方:根据平方根意义,方程两边开平方;6.求解:解一元一次方程;7.定解:写出原方程的解.我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法www.czsx.com.cn3.公式法一般地,对于一元二次方程ax2+bx+c=0(a≠0)上面这个式子称为一元二次方程的求根公式.用求根公式解一元二次方程的方法称为公式法(老师提示:用公式法解一
4、元二次方程的前提是:1.必需是一般形式的一元二次方程:ax2+bx+c=0(a≠0).2.b2-4ac≥0.www.czsx.com.cn公式法是这样生产的你能用配方法解方程ax2+bx+c=0(a≠0)吗?心动不如行动1.化1:把二次项系数化为1;3.配方:方程两边都加上一次项系数绝对值一半的平方;4.变形:方程左分解因式,右边合并同类;5.开方:根据平方根意义,方程两边开平方;6.求解:解一元一次方程;7.定解:写出原方程的解.2.移项:把常数项移到方程的右边;www.czsx.com.cn4.分解因式法当一元二次方程的一边是0,而另一
5、边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为分解因式法.老师提示:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”www.czsx.com.cnax2+c=0====>ax2+bx=0====>ax2+bx+c=0====>因式分解法公式法(配方法)2、公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“
6、因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法)3、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。1、直接开平方法因式分解法www.czsx.com.cn我们知道:代数式b2-4ac对于方程的根起着关键的作用.一元二次方程的根的判别式www.czsx.com.cn若方程有两个不相等的实数根,则b2-4ac>0回顾与反思判别式逆定理若方程有两个相等的实数根,则b2-4ac=0若方程没有实数根,则b2-4ac<0若方程有两个实数根,则b2-4ac≥0www
7、.czsx.com.cn判别式的用处1.不解方程.判别方程根的情况,2.根据方程根的情况,确定方程中待定常数的值或取值范围,3.进行有关的证明,www.czsx.com.cn一元二次方程根与系数的关系设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,则有x1+x2=,x1x2=.www.czsx.com.cn解应用题列方程解应用题的一般步骤是:1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(同一)的要注明单位;3.列:列代数式,列方程;4.解:解所列的方程;5.验:是否是所列
8、方程的根;是否符合题意;6.答:答案也必需是完事的语句,注明单位且要贴近生活.列方程解应用题的关键是:找出相等关系.回顾与复习5www.czsx.com.cn1.数字与方程例1.