高考数学《解析几何》专项训练及答案解析.doc

高考数学《解析几何》专项训练及答案解析.doc

ID:55257439

大小:1.95 MB

页数:21页

时间:2020-05-07

高考数学《解析几何》专项训练及答案解析.doc_第1页
高考数学《解析几何》专项训练及答案解析.doc_第2页
高考数学《解析几何》专项训练及答案解析.doc_第3页
高考数学《解析几何》专项训练及答案解析.doc_第4页
高考数学《解析几何》专项训练及答案解析.doc_第5页
资源描述:

《高考数学《解析几何》专项训练及答案解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考数学《解析几何》专项训练一、单选题1.已知直线过点A(,0)且斜率为1,若圆上恰有3个点到的距离为1,则的值为()A.B.C.D.2.已知双曲线的离心率为,过右焦点F的直线与两条渐近线分别交于A,B,且,则直线AB的斜率为()A.或B.或C.2D.3.已知点是圆上任意一点,则点到直线距离的最大值为()A.B.C.D.4.若过点的直线与曲线有公共点,则直线的斜率的取值范围为()A.B.C.D.5.已知抛物线C:的焦点为F,定点,若直线FM与抛物线C相交于A,B两点点B在F,M中间,且与抛物线C

2、的准线交于点N,若,则AF的长为()A.B.1C.D.6.已知双曲线的两个焦点分别为,,以为直径的圆交双曲线于,,,四点,且四边形为正方形,则双曲线的离心率为()A.B.C.D.7.已知抛物线C:的焦点F,点是抛物线上一点,以M为圆心的圆与直线交于A、B两点(A在B的上方),若,则抛物线C的方程为()A.B.C.D.8.已知离心率为的椭圆:的左、右焦点分别为,,过点且斜率为1的直线与椭圆在第一象限内的交点为,则到直线,轴的距离之比为()A.B.C.D.二、多选题9.已知点是直线上一定点,点、是圆

3、上的动点,若的最大值为,则点的坐标可以是()A.B.C.D.10.已知抛物线的焦点为,直线的斜率为且经过点,直线与抛物线交于点、两点(点在第一象限),与抛物线的准线交于点,若,则以下结论正确的是()A.B.C.D.三、填空题11.已知圆C经过两点,圆心在轴上,则C的方程为__________.12.已知圆与直线交于、两点,过、分别作轴的垂线,且与轴分别交于、两点,若,则_____.13.已知双曲线的焦距为,为上一点,则的渐近线方程为__________.14.已知抛物线,为其焦点,为其准线,过任

4、作一条直线交抛物线于两点,、分别为、在上的射影,为的中点,给出下列命题:(1);(2);(3);(4)与的交点的轴上;(5)与交于原点.其中真命题的序号为_________.四、解答题15.已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求曲线C的方程;(2)设不经过点的直线l与曲线C相交于A,B两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.16.已知椭圆方程为.(1)设椭圆的左右焦点分别为、,点在椭圆上运动,求的值;(2)设直线和圆相切,和椭

5、圆交于、两点,为原点,线段、分别和圆交于、两点,设、的面积分别为、,求的取值范围.参考答案1.D【解析】【分析】因为圆上恰有3个点到的距离为1,所以与直线平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线的距离为1,根据点到直线的距离公式即可求出的值.【详解】直线的方程为:即.因为圆上恰有3个点到的距离为1,所以与直线平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线的距离为1.故,解得.故选:D.【点睛】本题主要考查直线与圆的位置关系的应用,以及

6、点到直线的距离公式的应用,解题关键是将圆上存在3个点到的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题.2.B【解析】【分析】根据双曲线的离心率求出渐近线方程,根据,得到为中点,得到与的坐标关系,代入到渐近线方程中,求出点坐标,从而得到的斜率,得到答案.【详解】因为双曲线的离心率为,又,所以,所以双曲线渐近线为当点A在直线上,点B在直线上时,设,由及B是AF中点可知,分别代入直线方程,得,解得,所以,所以直线AB的斜率,由双曲线的对称性得,也成立.故选:B

7、.【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题.3.D【解析】【分析】计算出圆心到直线距离的最大值,再加上圆的半径可得出点到直线的距离的最大值.【详解】圆的圆心坐标为,半径为,点到直线的距离为,因此,点到直线距离的最大值为.故选:D.【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为,圆的半径为,则圆上一点到直线的距离的最大值为,最小值为,解题时要熟悉这个结论的应用,属于中等题.4.D【解析】设直线方程为,即,直线与曲线有公共点,圆心到直线

8、的距离小于等于半径,得,选择C另外,数形结合画出图形也可以判断C正确.5.C【解析】【分析】由题意画出图形,求出AB的斜率,得到AB的方程,求得p,可得抛物线方程,联立直线方程与抛物线方程,求解A的坐标,再由抛物线定义求解AF的长.【详解】解:如图,过B作垂直于准线,垂足为,则,由,得,可得,,,又,的方程为,取,得,即,则,抛物线方程为.联立,解得..故选:C.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题.6.D【解析】【分析】设、、、分别为第一、二

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。