欢迎来到天天文库
浏览记录
ID:55078852
大小:119.00 KB
页数:5页
时间:2020-04-26
《例谈几何画板在初等数学中的应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、例谈几何画板在初等数学中的应用对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着重要的作用。不难想象,一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的能力。同样,一个学生如果根本不具备数学想象力,要把数学学好那也是不可能的。正如前苏联著名数学家A.H.柯尔莫戈洛夫所指出的:“只要有可能,数学家总是尽力把他们正在研究的问题从几何上视觉化。”因此,随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革—
2、—用计算机辅助教学,改善人们的认知环境越来越受到重视。现代信息技术的迅速发展对传统的教学模式产生了巨大的冲击。从国外引进的教育软件《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。并且“几何画板”提供了一个动态分析几何问题的环境,拓展了几何教学研究的空间,弥补了传统几何教学中不注重“几何研究”和“几何实验“教学的弱点,使几何教学更加合理、更加有效以及更其多样性。。那么,《几何画板》在高中数学教学中有哪些应用呢?作为一名高中数学教师笔者就
3、此谈几点体会:一、《几何画板》在高中代数教学中的应用“函数”是中学数学中最基本、最重要的概念,它的概念和思维方法渗透在高中数学的各个部分;同时,函数是以运动变化的观点对现实世界数量关系的一种刻划,这又决定了它是对学生进行素质教育的重要材料。就如华罗庚所说:“数缺形少直观,形缺数难入微。”函数的两种表达方式——解析式和图象——之间常常需要对照(如研究函数的单调性、讨论方程或不等式的解的情况、比较指数函数和对数函数图象之间的关系等)。为了解决数形结合的问题,在有关函数的传统教学中多以教师手工绘图,但手工绘图有不精确、速度慢的弊端;应用几何画
4、板快速直观的显示及变化功能则可以克服上述弊端,大大提高课堂效率,进而起到事倍功半的效果。具体说来,可以用《几何画板》根据函数的解析式快速作出函数的图象,并可以在同一个坐标系中作出多个函数的图象,如在同一个直角坐标系中作出函数y=x2、y=x3和y=x1/2的图象,比较各图象的形状和位置,归纳幂函数的性质;还可以作出含有若干参数的函数图象,当参数变化时函数图象也相应地变化,如在讲函数y=Asin(ωx+φ)的图象时,传统教学只能将A、ω、φ代入有限个值,观察各种情况时的函数图象之间的关系;利用《几何画板》则可以以线段b、T的长度和A点到x
5、轴的距离为参数作图(如图1),当拖动两条线段的某一端点(即改变两条线段的长度)时分别改变三角函数的首相和周期,拖动点A则改变其振幅,这样在教学时既快速灵活,又不失一般性。《几何画板》在高中代数的其他方面也有很多用途。例如,借助于图形对不等式的一些性质、定理和解法进行直观分析——由“半径不小于半弦”证明不等式“a+b≥2(a、b∈R+)等;再比如,讲解数列的极限的概念时,作出数列an=10-n的图形(即作出一个由离散点组成的函数图象),观察曲线的变化趋势,并利用《几何画板》的制表功能以“项数、这一项的值、这一项与0的绝对值”列表,帮助学生
6、直观地理解这一较难的概念。二、《几何画板》在立体几何教学中的应用立体几何是在学生已有的平面图形知识的基础上讨论空间图形的性质;它所用的研究方法是以公理为基础,直接依据图形的点、线、面的关系来研究图形的性质。从平面图形到空间图形,从平面观念过渡到立体观念,无疑是认识上的一次飞跃。初学立体几何时,大多数学生不具备丰富的空间想象的能力及较强的平面与空间图形的转化能力,主要原因在于人们是依靠对二维平面图形的直观来感知和想象三维空间图形的,而二维平面图形不可能成为三维空间图形的真实写照,平面上绘出的立体图形受其视角的影响,难于综观全局,其空间形式
7、具有很大的抽象性。如两条互相垂直的直线不一定画成交角为直角的两条直线;正方体的各面不能都画成正方形等。这样一来,学生不得不根据歪曲真象的图形去想象真实情况,这便给学生认识立体几何图形增加了困难。而应用《几何画板》将图形动起来,就可以使图形中各元素之间的位置关系和度量关系惟妙惟肖,使学生从各个不同的角度去观察图形。这样,不仅可以帮助学生理解和接受立体几何知识,还可以让学生的想象力和创造力得到充分发挥。像在讲二面角的定义时(如图2),当拖动点A时,点A所在的半平面也随之转动,即改变二面角的大小,图形的直观地变动有利于帮助学生建立空间观念和空
8、间想象力;在讲棱台的概念时,可以演示由棱锥分割成棱台的过程(如图3),更可以让棱锥和棱台都转动起来,使学生在直观掌握棱台的定义,并通过棱台与棱锥的关系由棱锥的性质得出棱台的性质的同时,让学生欣赏到数学的美,
此文档下载收益归作者所有