欢迎来到天天文库
浏览记录
ID:55046307
大小:592.01 KB
页数:23页
时间:2020-05-08
《大学物理(上)习题讲解(刚体力学部分).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、大学物理例题讲解南昌大学陈国云2014年4月5日第五章刚体力学基础例题5-1求质量为m、长为l的均匀细棒对下面三种转轴的转动惯量:(1)转轴通过棒的中心并和棒垂直;(2)转轴通过棒的一端并和棒垂直;(3)转轴通过棒上距中心为h的一点并和棒垂直。解:(1)建立坐标系,分割质量元hJ与刚体质量、质量分布、轴的位置有关(2)建立坐标系,分割质量元(3)建立坐标系,分割质量元例题5-2求圆盘对于通过中心并与盘面垂直的转轴的转动惯量。设圆盘的半径为R,质量为m,密度均匀。rRdr解:设圆盘的质量面密度为,在圆盘上取一半径为r、宽度为dr的圆环(如图),
2、环的面积为2rdr,环的质量dm=2rdr。可得例题5-3一轻绳跨过一定滑轮,滑轮视为圆盘,绳的两端分别悬有质量为m1和m2的物体1和2,m1m1,物体1向上运动,物体2向下运动,滑轮以顺时针方向
3、旋转,Mr的指向如图所示。可列出下列方程式中是滑轮的角加速度,a是物体的加速度。滑轮边缘上的切向加速度和物体的加速度相等,即从以上各式即可解得而当不计滑轮质量及摩擦阻力矩即令m=0、M=0时,有上题中的装置叫阿特伍德机,是一种可用来测量重力加速度g的简单装置。因为在已知m1、m2、r和J的情况下,能通过实验测出物体1和2的加速度a,再通过加速度把g算出来。在实验中可使两物体的m1和m2相近,从而使它们的加速度a和速度v都较小,这样就能角精确地测出a来。例题5-4一半径为R,质量为m匀质圆盘,平放在粗糙的水平桌面上。设盘与桌面间摩擦系数为,
4、令圆盘最初以角速度0绕通过中心且垂直盘面的轴旋转,问它经过多少时间才停止转动?rRdrde解:由于摩擦力不是集中作用于一点,而是分布在整个圆盘与桌子的接触面上,力矩的计算要用积分法。在图中,把圆盘分成许多环形质元,每个质元的质量dm=rddre,所受到的阻力矩是rdmg。此处e是盘的厚度。圆盘所受阻力矩就是因m=eR2,代入得根据定轴转动定律,阻力矩使圆盘减速,即获得负的角加速度.设圆盘经过时间t停止转动,则有由此求得例题5-5一匀质细棒长为l,质量为m,可绕通过其端点O的水平轴转动,如图所示。当棒从水平位置自由释放后,它在竖直
5、位置上与放在地面上的物体相撞。该物体的质量也为m,它与地面的摩擦系数为。相撞后物体沿地面滑行一距离s而停止。求相撞后棒的质心C离地面的最大高度h,并说明棒在碰撞后将向左摆或向右摆的条件。解:这个问题可分为三个阶段进行分析。第一阶段是棒自由摆落的过程。这时除重力外,其余内力与外力都不作功,所以机械能守恒。我们把棒在竖直位置时质心所在处取为势能CO零点,用表示棒这时的角速度,则(1)第二阶段是碰撞过程。因碰撞时间极短,自由的冲力极大,物体虽然受到地面的摩擦力,但可以忽略。这样,棒与物体相撞时,它们组成的系统所受的对转轴O的外力矩为零,所以,这个
6、系统的对O轴的角动量守恒。我们用v表示物体碰撞后的速度,则(2)式中’为棒在碰撞后的角速度,它可正可负。’取正值,表示碰后棒向左摆;反之,表示向右摆。第三阶段是物体在碰撞后的滑行过程。物体作匀减速直线运动,加速度由牛顿第二定律求得为(3)由匀减速直线运动的公式得(4)亦即由式(1)、(2)与(4)联合求解,即得(5)亦即l>6s;当’取负值,则棒向右摆,其条件为亦即l<6s棒的质心C上升的最大高度,与第一阶段情况相似,也可由机械能守恒定律求得:把式(5)代入上式,所求结果为当’取正值,则棒向左摆,其条件为(6)例题5-6工程上,常用
7、摩擦啮合器使两飞轮以相同的转速一起转动。如图所示,A和B两飞轮的轴杆在同一中心线上,A轮的转动惯量为JA=10kgm2,B的转动惯量为JB=20kgm2。开始时A轮的转速为600r/min,B轮静止。C为摩擦啮合器。求两轮啮合后的转速;在啮合过程中,两轮的机械能有何变化?AACBACB或共同转速为在啮合过程中,摩擦力矩作功,所以机械能不守恒,部分机械能将转化为热量,损失的机械能为例题5-7恒星晚期在一定条件下,会发生超新星爆发,这时星体中有大量物质喷入星际空间,同时星的内核却向内坍缩,成为体积很小的中子星。中子星是一种异常致密的星体,
8、一汤匙中子星物体就有几亿吨质量!设某恒星绕自转轴每45天转一周,它的内核半径R0约为2107m,坍缩成半径R仅为6103m的中子星。试求中子星的角
此文档下载收益归作者所有