欢迎来到天天文库
浏览记录
ID:54913894
大小:641.50 KB
页数:7页
时间:2020-04-23
《初中数学因式分解的常用方法(精华例题详解).doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、初中阶段因式分解的常用方法(例题详解)因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。 1. 因式分解的对象是多项式; 2. 因式分解的结果一定是整式乘积的形式; 3. 分解因式,必须进行到每一个因式都不能再分解为止; 4. 公式中的字母可以表示单项式,也可以表示多项式; 5. 结果如有相同因式,应写成幂的形式; 6. 题目中没有指定数的范围,一般指在有理数范围内分解; 7. 因式分解的一般步骤是: (1)通常
2、采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法.如多项式其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用写出结果.三、分组分解法.(一)分组后能直接提公因式例1
3、、分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。解:原式==每组之间还有公因式!=思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。例2、分解因式:解法一:第一、二项为一组;解法二:第一、四项为一组;第三、四项为一组。第二、三项为一组。解:原式=原式=====练习:分解因式1、2、7(二)分组后能直接运用
4、公式例3、分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。解:原式===例4、分解因式:解:原式===注意这两个例题的区别!练习:分解因式3、4、综合练习:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——进行分解。特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。例5、分解因式:分析:将6分成两个数相乘,且这两个数的和要等于5。由于6
5、=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。12解:=13=1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。例6、分解因式:7解:原式=1-1=1-6(-1)+(-6)=-7练习5、分解因式(1)(2)(3)练习6、分解因式(1)(2)(3)(二)二次项系数不为1的二次三项式——条件:(1)(2)(3)分解结果:=例7、分解因式:分析:1-23-5(-6)+(-5)=-11解:=练习7、分解因式:(1)(2)(3)(
6、4)(三)二次项系数为1的齐次多项式例8、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。18b1-16b8b+(-16b)=-8b解:==练习8、分解因式(1)(2)(3)(四)二次项系数不为1的齐次多项式例9、例10、1-2y把看作一个整体1-12-3y1-2(-3y)+(-4y)=-7y(-1)+(-2)=-3解:原式=解:原式=练习9、分解因式:(1)(2)综合练习10、(1)(2)(3)(4)(5)(6)7(7)(8)(9)(10)思考:分解因式:五、主元法.例11、分解因式:5-2解法一:以
7、为主元2-1解:原式=(-5)+(-4)=-9=1-(5y-2)=1(2y-1)=-(5y-2)+(2y-1)=-(3y-1)解法二:以为主元1-1解:原式=12=-1+2=1=2(x-1)=5-(x+2)=5(x-1)-2(x+2)=(3x-9)练习11、分解因式(1)(2)(3)(4)六、双十字相乘法。定义:双十字相乘法用于对型多项式的分解因式。条件:(1),,(2),,即:,,则例12、分解因式(1)(2)解:(1)应用双十字相乘法:,,∴原式=7(2)应用双十字相乘法:,,∴原式=练习12、分解因式(1)(2)七、换元法。例13、
8、分解因式(1)(2)解:(1)设2005=,则原式===(2)型如的多项式,分解因式时可以把四个因式两两分组相乘。原式=设,则∴原式====练习13、分解因式(1)(2)(3)例14、分解因式
此文档下载收益归作者所有