欢迎来到天天文库
浏览记录
ID:54860836
大小:93.00 KB
页数:4页
时间:2020-04-22
《最新中考数学考点聚焦:直线与圆的位置关系试题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考点跟踪突破24 直线与圆的位置关系一、选择题1.(2016·湘西州)在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是(A)A.相交B.相切C.相离D.不能确定2.(2016·无锡)如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为(D)A.70°B.35°C.20°D.40°,第2题图) ,第3题图)3.(2016·河北)如图为4×4的网格图,A,B,C,D,O均在格点上,点O是(B)A.△ACD的外心B.
2、△ABC的外心C.△ACD的内心D.△ABC的内心4.(2016·荆州)如图,过⊙O外一点P引⊙O的两条切线PA,PB,切点分别是A,B,OP交⊙O于点C,点D是优弧上不与点A,点C重合的一个动点,连接AD,CD,若∠APB=80°,则∠ADC的度数是(C)A.15°B.20°C.25°D.30°,第4题图) ,第5题图)5.(导学号:01262037)(2016·鄂州)如图所示,AB是⊙O的直径,AM,BN是⊙O的两条切线,D,C分别在AM,BN上,DC切⊙O于点E,连接OD,OC,BE,AE,BE与OC相交于点P,AE与OD
3、相交于点Q,已知AD=4,BC=9,以下结论:①⊙O的半径为;②OD∥BE;③PB=;④tan∠CEP=.其中正确结论有(B)A.1个B.2个C.3个D.4个点拨:作DK⊥BC于K,连接OE.∵AD,BC是切线,∴∠DAB=∠ABK=∠DKB=90°,∴四边形ABKD是矩形,∴DK=AB,AD=BK=4,∵CD是切线,∴DA=DE,CE=CB=9,在Rt△DKC中,∵DC=DE+CE=13,CK=BC-BK=5,∴DK==12,∴AB=DK=12,∴⊙O半径为6.故①错误,∵DA=DE,OA=OE,∴OD垂直平分AE,同理OC垂直
4、平分BE,∴AQ=QE,∵AO=OB,∴OD∥BE,故②正确.在Rt△OBC中,PB===,故③正确,∵CE=CB,∴∠CEB=∠CBE,∴tan∠CEP=tan∠CBP===,故④错误,∴②③正确,故选B.二、填空题6.(2016·赤峰)如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是__8_cm__.,第6题图) ,第7题图)7.(2016·齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=__45__度.8.(2016·呼和浩特)在周长
5、为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为__24__.9.(2016·咸宁)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的度数为__122°__.,第9题图) ,第10题图)10.(2015·烟台)如图,直线l:y=-x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为__2-2或2+2__.三、解答
6、题11.(导学号:01262137)(2016·荆门)如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.(1)证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠CAE=∠OAC,∴∠OCA=∠CAE,∴OC∥FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线 (2)解:连接BC,在Rt△ACE中,AC===,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCA
7、=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴=,∴=,∴AB=5,∴AO=2.5,即⊙O的半径为2.5.12.(导学号:01262138)(2016·张家界)如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠CAD.(1)求证:直线MN是⊙O的切线;(2)若CD=3,∠CAD=30°,求⊙O的半径.(1)证明:连接OC,∵OA=OC,∴∠BAC=∠ACO.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠ACO=∠CAD.∴OC∥AD,又已知AD丄MN,∴OC丄
8、MN,∴直线MN是⊙O的切线 (2)解:已知AB是⊙O的直径,则∠ACB=90°,又AD丄MN,则∠ADC=90°.∵CD=3,∠CAD=30°,∴AD=3,AC=6.在Rt△ABC和Rt△ACD中,∠BAC=∠CAD,∴Rt△ABC∽Rt△ACD
此文档下载收益归作者所有