杨妍红的教案.doc

杨妍红的教案.doc

ID:54236312

大小:201.50 KB

页数:24页

时间:2020-04-15

杨妍红的教案.doc_第1页
杨妍红的教案.doc_第2页
杨妍红的教案.doc_第3页
杨妍红的教案.doc_第4页
杨妍红的教案.doc_第5页
资源描述:

《杨妍红的教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、备课时间月日上课时间月日星期第节课题直角三角形(二)第课时累计-课时教学目标1.知识目标:①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性②利用“HL’’定理解决实际问题2.能力目标:①进一步掌握推理证明的方法,发展演绎推理能力教学重点教学难点教学过程二次备课1:复习提问1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。我们曾从折纸的过程中得到启示,作了等

2、腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通过作等腰三角形底边的高来证明“等边对等角”.要求学生完成,一位学生的过程如下:已知:在△ABC中,AB=AC.求证:∠B=∠C.证明:过A作AD⊥BC,垂足为C,∴∠ADB=∠ADC=90°又∵AB=AC,AD=AD,∴△ABD≌△ACD.∴∠B=∠C(全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前

3、面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)”.也有学生认同上述的证明。教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。2:引入新课(1).“HL”定理.由师生共析完成已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.求证:Rt△ABC≌Rt△A′

4、B′C′证明:在Rt△ABC中,AC=AB2一BC2(勾股定理).又∵在Rt△A'B'C'中,A'C'=A'C'=A'B'2一B'C'2(勾股定理).AB=A'B',BC=B'C',AC=A'C'.∴Rt△ABC≌Rt△A'B'C'(SSS).教师用多媒体演示:定理斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.从而肯定了第一位同学通过作底边的高证明两个三角形全等,从而得到“等边对等角”的证法是正确的.练习:判断下列命题的真假,并说明理由:(1)两个锐角对应相等的两个直角三角形全

5、等;(2)斜边及一锐角对应相等的两个直角三角形全等;(3)两条直角边对应相等的两个直角三角形全等;(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.已知:R△ABC和Rt△A'B'C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D'(如图).求证:Rt△ABC≌Rt△A'B'C'.证明:在Rt△BDC和Rt△B'

6、D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B'D'C'(HL定理).CD=C'D'.又∵AC=2CD,A'C'=2C'D',∴AC=A'C'.∴在Rt△ABC和Rt△A'B'C'中,∵BC=B'C',∠C=∠C'=90°,AC=A'C',∴Rt△ABC≌CORt△A'B'C(SAS).通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。3:做一做问题你能用三角尺平分一个已知角吗?请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.(设计做一做的目的为了

7、让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)4:议一议如图,已知∠ACB=∠BDA=90°,要使△ACB≌BDA,还需要什么条件?把它们分别写出来.这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案.(教师一定要提供时间和空间,让同学们认真思考,勇于向困难提出挑战)5:例题学习如图,在△ABC≌△A'B'C'中,CD,C'D'分别分别是高,并且AC=A'C

8、',CD=C'D'.∠ACB=∠A'C'B'.求证:△ABC≌△A'B'C'.分析:要证△ABC≌△A'B'C',由已知中找到条件:一组边AC=A'C',一组角∠ACB=∠A'C'B'.如果寻求∠A=∠A',就可用ASA证明全等;也可以寻求么∠B=∠B',这样就

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。