欢迎来到天天文库
浏览记录
ID:53322710
大小:261.00 KB
页数:4页
时间:2020-04-03
《安徽省2013年高考数学第二轮复习 专题升级训练27 解答题专项训练数列 理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题升级训练27解答题专项训练(数列)1.(2012·云南昆明质检,17)已知等差数列{an}的前n项和为Sn,a2=3,S10=100.(1)求数列{an}的通项公式;(2)设bn=nan,求数列{bn}的前n项和Tn.2.(2012·山东济南二模,18)已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k,(1)求k的值及数列{an}的通项公式;(2)若数列{bn}满足=,求数列{bn}的前n项和Tn.3.(2012·河南豫东、豫北十校段测,18)已知数列{an}的前n项和为Sn,a1=
2、1,Sn=nan-n(n-1)(n∈N*).(1)求数列{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.4.(2012·河北石家庄二模,17)已知Sn是等比数列{an}的前n项和,S4,S10,S7成等差数列.(1)求证a3,a9,a6成等差数列;(2)若a1=1,求数列{a}的前n项的积.5.(2012·陕西西安三质检,19)已知等差数列{an}满足a2=7,a5+a7=26,{an}的前n项和为Sn.(1)求an及Sn;(2)令bn=(n∈N*),求数列{bn}的前n项和Tn
3、.6.(2012·广西南宁三测,20)已知数列{an}满足a1=2,nan+1=(n+1)an+2n(n+1).(1)证明:数列为等差数列,并求数列{an}的通项;(2)设cn=,求数列{cn·3n-1}的前n项和Tn.7.(2012·安徽芜湖一中,理21)已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两根,且a1=1.(1)证明:数列是等比数列.(2)求数列{an}的前n项和Sn.(3)是否存在常数λ,使得bn-λSn>0对于任意的正整数n都成立,若存
4、在,求出λ的取值范围;若不存在,请说明理由.8.(2012·北京石景山统测,20)若数列{An}满足An+1=A,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.(1)证明数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列;(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式;(3)记bn
5、=log2an+1Tn,求数列{bn}的前n项和Sn,并求使Sn>2012的n的最小值.-4-参考答案1.解:(1)设{an}的公差为d,有解得a1=1,d=2,∴an=a1+(n-1)d=2n-1.(2)Tn=+3×2+5×3+…+(2n-1)×n,Tn=2+3×3+5×4+…+(2n-1)×n+1,相减,得Tn=+2×2+2×3+…+2×n-(2n-1)×n+1=-×n.∴Tn=1-.2.解:(1)当n≥2时,由an=Sn-Sn-1=3n+k-3n-1-k=2×3n-1,a1=S1=3+k,所
6、以k=-1.(2)由=(4+k)anbn,可得bn=,bn=×,Tn=,Tn=,所以Tn=,Tn=.3.解:(1)∵Sn=nan-n(n-1),当n≥2时,Sn-1=(n-1)an-1-(n-1)(n-2),∴an=Sn-Sn-1=nan-n(n-1)-(n-1)an-1+(n-1)(n-2).∴an-an-1=2.∴数列{an}是首项a1=1,公差d=2的等差数列.故an=1+(n-1)×2=2n-1,n∈N*.(2)由(1)知bn===-,∴Tn=b1+b2+…+bn=+++…+=1-=.4.
7、解:(1)当q=1时,2S10≠S4+S7,∴q≠1.由2S10=S4+S7,得=+.∵a1≠0,q≠1,∴2q10=q4+q7.则2a1q8=a1q2+a1q5.∴2a9=a3+a6.∴a3,a9,a6成等差数列.(2)依题意设数列{a}的前n项的积为Tn,Tn=a13·a23·a33…an3=13·q3·(q2)3·…·(qn-1)3=q3·(q3)2·…·(q3)n-1=(q3)1+2+3+…+(n-1)=.-4-又由(1)得2q10=q4+q7,∴2q6-q3-1=0,解得q3=1(舍),
8、q3=-.∴Tn=.5.解:(1)设等差数列{an}的首项为a1,公差为d.由于a3=7,a5+a7=26,所以a1+2d=7,2a1+10d=26.解得a1=3,d=2.由于an=a1+(n-1)d,Sn=,所以an=2n+1,Sn=n(n+2).(2)因为an=2n+1,所以a-1=4n(n+1).因此bn==,故Tn=b1+b2+…+bn===,所以数列{bn}的前n项和Tn=(n+1).6.解:(1)∵nan+1=(n+1)an+2n(n+1),∴-=2.∴数列为等差数列.
此文档下载收益归作者所有