欢迎来到天天文库
浏览记录
ID:53249266
大小:93.50 KB
页数:5页
时间:2020-04-02
《【学海导航】2014版高考数学一轮总复习 第31讲 等差数列的概念及基本运算同步测控 文.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第31讲 等差数列的概念及基本运算 1.(2011·江西卷)设{an}为等差数列,公差d=-2,Sn为其前n项和,若S10=S11,则a1=( )A.18B.20C.22D.24 2.若数列{an}的前n项和为Sn=an2+n(a∈R),则下列关于数列{an}的说法正确的是( )A.{an}一定是等差数列B.{an}从第二项开始构成等差数列C.a≠0时,{an}是等差数列D.不能确定其是否为等差数列 3.等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=( )A.1B.C.D.- 4.(2012·广东卷)已知递增的等差数列{an}满足a1=1,
2、a3=a22-4,则an=__________. 5.已知数列{an}中,a1=-1,an+1·an=an+1-an,则数列的通项公式为__________. 6.设Sn是等差数列{an}的前n项和,若=,则=__________. 7.(2012·广东省肇庆市第一次模拟)已知数列{an}是一个等差数列,且a2=1,a5=-5.(1)求{an}的通项an;(2)设cn=,bn=2cn,求T=log2b1+log2b2+log2b3+…+log2bn的值.5 1.等差数列{an}的前n项和为Sn,且a4-a2=8,a3+a5=26.记Tn=,如果存在正整数M,使得对一切正整数n,Tn≤M都成立
3、,则M的最小值是______. 2.(2012·湖北省重点教学全作学校)等差数列{an}的前n项和为Sn,满足S20=S40,则下列结论中正确的选项为______.①S30是Sn中的最大值;②S30是Sn中的最小值;③S30=0;④S60=0. 3.已知数列{an}中,a1=,an=2-(n≥2,n∈N*),数列{bn}满足bn=(n∈N*).(1)求证:{bn}是等差数列;(2)求数列{an}中的最大项与最小项,并说明理由.5第31讲巩固练习1.B 2.A 3.B4.2n-1 解析:设公差为d(d>0),则1+2d=(1+d)2-4,解得d=2,所以an=2n-1.5.-解析:由an+
4、1·an=an+1-an,得-=1,即-=-1,又=-1,则数列{}是以-1为首项和公差的等差数列,于是=-1+(n-1)×(-1)=-n,所以an=-.6.解析:由等差数列的求和公式可得,==,可得a1=2d且d≠0.所以===.7.解析:(1)设{an}的公差为d,由已知条件,,解得,所以an=a1+(n-1)d=-2n+5.(2)因为an=-2n+5,所以cn===n,所以bn=2cn=2n,所以T=log2b1+log2b2+log2b3+…+log2bn=log22+log222+log223+…+log22n=1+2+3+…+n=.提升能力1.2解析:因为{an}为等差数列,由a
5、4-a2=8,a3+a5=26,可解得a1=1,d=4,从而Sn5=2n2-n,所以Tn=2-,若Tn≤M对一切正整数n恒成立,则只需Tn的最大值≤M即可.又Tn=2-<2,所以只需2≤M,故M的最小值是2.2.④解析:因为Sn=na1+d=n2+(a1-)n,当d>0时,S20=S40,则S30为最小值;若d<0,S20=S40,则S30为最大值;因此S30不一定为0,因此①②③不正确;在等差数列{an}中,S20,S40-S20,S60-S40成等差数列.所以2(S40-S20)=S20+S60-S40,又S40=S20⇒S60=0,故选项④正确.3.解析:(1)证明:bn+1-bn=-
6、=-=-=1,所以{bn}是公差为1的等差数列.(2)由(1)知,bn=b1+(n-1)×1=+(n-1)=n-,所以=n-,所以an=,又an=1+,由函数y=1+的图象可知,5n=4时,an最大;n=3时,an最小,所以最大项为a4,最小项为a3.5
此文档下载收益归作者所有