资源描述:
《菱形证明专题训练学生版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.............o............o............o.............o.............外.............o............o.............o.............装.............o.............o............o.............订.............o.............o.............o.............线.............o.............o......
2、....................o.............o............o.........学校:___________姓名:____________班级:____________考号:____________.............o.............o..........................o.............内.............o.............o.............o...........装.............o.............o.
3、............o............订.............o.............o.............o............线.............o.............o.............o.............o.............o.............o........菱形证明专题训练1.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD为菱形. 2.如图,矩形ABCD中,
4、点O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC. 求证:(1)四边形EBFD是菱形;(2)MB∶OE=3∶2.3.如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.求证:四边形第5页共6页.............o............o............o.............o.............外
5、.............o............o.............o.............装.............o.............o............o.............订.............o.............o.............o.............线.............o.............o..........................o.............o............o.........学校:________
6、___姓名:____________班级:____________考号:____________.............o.............o..........................o.............内.............o.............o.............o...........装.............o.............o.............o............订.............o.............o.............o
7、............线.............o.............o.............o.............o.............o.............o........BGFD是菱形. 4.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE. 求证:OE=BC. 6.(7分)如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD于点G,求证:四边形ACGF是菱形. 8.如图,菱形ABCD的对角线AC与BD相交于O,点E,F分别为边AB,AD的
8、中点,连接EF,OE,OF,求证:四边形AEOF是菱形. 第5页共6页.............o............o............o.............o.............外.............o......