欢迎来到天天文库
浏览记录
ID:53089157
大小:63.87 KB
页数:3页
时间:2020-04-01
《等比数列的前n项和教学设计.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、等比数列的前n项和教学设计一、设计思想《新课程改革纲要》提出,要“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力”。二、教学目标理解并掌握等比数列前n项和公式的推导过程公式的特点,在此基础上能初步应用公式解决与之有关的问题。通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。三、教学重点、难点教学
2、重点是公式的推导、公式的特点和公式的运用。教学难点是公式的推导方法和公式的灵活运用。公式推导四、教学过程设计:学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:(一)创设情境,提出问题在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后
3、,国王大吃一惊。为什么呢?(二)师生互动,探究问题在肯定他们的思路后,我接着问:是什么数列?有何特征?应归结为什么数学问题呢?【学情预设】:探讨1:设,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?(三)类比联想,解决问题这时我再顺势引导学生将结论一般化,设等比数列,首项为,公比为,如何求前n项和?这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进
4、行指导。【设计意图】:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。【学情预设】:在学生推导完成后,我再问:由得对不对?这里的能不能等于1?等比数列中的公比能不能为1?时是什么数列?此时?(这里引导学生对进行分类讨论,得出公式,同时为后面的例题教学打下基础。)再次追问:结合等比数列的通项公式,如何把用、、表示出来?(引导学生得出公式的另一形式)(四)讨论交流,延伸拓展在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,那么我们能否利用这个
5、关系而求出呢?根据等比数列的定义又有,能否联想到等比定理从而求出呢?源于课本,又高于课本,对学生的思维发展有促进作用.(五)变式训练,深化认识例1:求等比数列前8项和;变式1、等比数列前多少项的和是;变式2、等比数列求第5项到第10项的和;变式3、等比数列求前2n项中所有偶数项的和。首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。(六)例题讲解,形成技能例2:求和。(七)总结归纳,加深理解以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知
6、识点及数学思想方法两方面总结。(八)课后作业,分层练习必做:P66练习1:(1)、(2);2选作:思考题:(1)求和(2)“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首中国古诗的答案是多少?七、教学反思:对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。
此文档下载收益归作者所有