欢迎来到天天文库
浏览记录
ID:47695983
大小:57.50 KB
页数:4页
时间:2020-01-23
《等比数列的前n项和 教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、[教学设计]等比数列的前n项和第一课时一、教材分析。(1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5)》(人教A版)第二章第5节第一课时,是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。二、学情分析。(1)学生的已有的
2、知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。(2)教学对象:高二文科重点班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容
3、易出错。三、教学目标。根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标———理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。(2)过程与方法目标———通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.(3)德育目标———培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。四、重点,难点分析。教学重点:公式的推导、公式的特点和公式的运用。
4、教学难点:公式的推导方法及公式应用中q与1的关系。五、教法与学法分析.培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主
5、体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。六、课堂设计(一)创设情境,提出问题。(时间设定:3分钟)阅读P55故事:在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令管粮仓的大臣计算,结果出来后,国王大吃一惊。为什么呢?[设计这个情境目的是
6、在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]问题1:西萨要的是多少粒小麦?引导学生写出麦粒总数: S64=1+21+22+23+…+262+263 (1) (二)师生互动,探究问题[4分钟]问题2:怎样求出这个和?有学生会说:用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。)问题3:这个和式有什么特征?(学生会发现,后一项都是前一项的2倍)问题4:如果我们把每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到另一式:2S64=2+22+23+24+…+263+264(2)比较(1)(2)两式,你有什
7、么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项)问题5:将两式相减,相同的项就消去了,得到什么呢?[这五个问题的设计意图:层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之苦后,突然发现上述解法,也让学生感受到这种方法的神奇]。这时,老师向同学们介绍错位相减法。问题6:同学们反思一下我们错位相减法求此题的过程,为什么(1)式两边要同乘以2呢?[这个问题的设计意图:让学生对错位相减法有一个深刻的认
此文档下载收益归作者所有