数学教学中数学思想方法的渗透探析-论文.pdf

数学教学中数学思想方法的渗透探析-论文.pdf

ID:53076025

大小:99.92 KB

页数:1页

时间:2020-04-16

数学教学中数学思想方法的渗透探析-论文.pdf_第1页
资源描述:

《数学教学中数学思想方法的渗透探析-论文.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2014年9月10日理科考试研究·数学版·4l·数学教学中数学思想方法的渗透探析江西省于都县罗江初中342300曾亚彦江西省信丰县大塘中心小学341600郭婕秀一、引言3.化归思想方法的渗透社会人才要求标准的提高体现出素质教育实施的重要性.在解决数学问题时,化归思想方法的应用效果是最好的,而九年义务教育阶段数学学科教学开展的目的在于让学生在有理数运算是最能够体现这一数学思想方法的教学内容.笔者知识学习的过程中体会到数学知识的应用与社会生活之间的在介绍有理数的加法时,就加入了相反数的感念,采用化归思紧密关联,在对数学知识的重要性有了充分的理解认知后,力想方法引导学生理解同化有理数减法法则,在加

2、减法统一了以争借由自己的知识力量去解决生活中的数学问题.优秀的思维后,得出代数和的数学概念.与此相似的还有在有理数乘法的能力是高素质人才必备的技能之一,作为思维能力有效锻炼的教学基础上融入倒数概念,化归得到除法法则,并使得两种互基础学科之一,数学课程中思维能力的锻炼是十分必要的.数逆的运算统一到一起.由此可见,初中数学教师在运用化归数学思想方法的渗透对于学生创新能力而言有着十分重要的引学思想方法时,可以巧辟蹊径,辅助学生通过自己的力量解决导作用.据可靠调查数据显示,当下初中数学课程教学并没有数学问题.这对于学生代数式、方程和函数变形等数学知识的对数学思维方法给予足够的重视,还有许多教师的教学

3、目标中学习都是很有帮助的.甚至根本不包括数学思想方法的教学内容,这对于数学思想的4.数形结合思想方法的渗透渗透而言是极大的阻碍.数(量)和形(图)结合起来对数学问题进行分析、研究进二、数学教学数学思想方法渗透的建议而解决的思维策略被称之为数形结合思想方法,这一思想方法渗透教学层次性实施的过程中,必须要对教学大纲的要求对于数学知识的学习来说极为有效.在数形结合思想方法的应有所明确.在笔者看来,初中数学教学中数学思想方法渗透主用过程中,通过数形之间的互相转换,将较为抽象的数量关系要可分为比较思想方法的渗透、分类思想方法的渗透、化归思转换为具体直观的几何图形,让学习者在图形中找出数学问题想方法的渗

4、透以及数形结合思想方法的渗透的渗透四大类,下中各项数量之间的联系和关系,进而解决数量问题.又或者在面笔者将结合教学实例说说每项思想方法的渗透教学所采取涉及到几何图形相关的数学问题时,找出图形中已知数量之间的方法.的关联,然后解决图形问题.数形结合能力训练培养的加强,对1.比较思想方法的渗透于学生数形转换能力的提升能起到一定的帮助作用,同时还能研究对象的相同点和不同点是该思维方法的主要研究对够提升学生的迁移思维能力,让他们离数学知识的大门更近一象.随着知识内容的扩充,学生所掌握的数学知识越来越多,新步.笔者个人认为,属性结合思想方法的渗透最适合用于函数旧知识之间的区别和联系对学生知识主体的构建

5、是十分有利知识教学部分,笔者在介绍某一典型函数时,首先会根据函数的,在这样的学习过程中,不仅能够迅速理解同化新的知识内表达式画出与之对应的函数图象,然后根据函数图象分析这一容,同时还有助于旧知识的巩固记忆.笔者在完成有理数乘法函数的性质和特征,又或者是在已知某一函数图象的前提下,法则的教学后,提出了两个思考问题:小学阶段学的乘法和有推出与之对应的函数表达式,这样的方法应用能够用很短的时理数乘法之间有什么联系,两者之间的区别是什么.在经过激间解决数学问题.烈的课堂讨论后,学生了解到了有理数乘法中包含了小学乘法在介绍直角坐标系的概念时,笔者将学生的座位组成一个“的知识内容.两者之间的区别在于,小

6、学乘法不需要考虑数字—Y”平面直角坐标系模型,让学生自由坐在轴、Y轴队列,的符号问题,可以直接计算,而有理数乘法的计算过程中要注学生的右侧为轴正方向,而前方则为Y轴正方向,单位长度为意数字的符号.学生通过两个阶段不同的乘法运算问题比较两个同学座位间距离.然后请几个同学分别说出自己的坐标,后,对新知识有更好的了解和认知,有利于后期知识教学.教师再告诉学生们,“和你关于原点对称的为第1个伙伴,和你2.分类思想方法的渗透关于Y轴对称的为第2个伙伴,而和你关于轴对称的为第3个数学对象属性、本质相同点和区别点之间采取分类比较的伙伴.”学生在教师的指导下很快找到了“自己的伙伴”,同时方式进行归纳,并依据

7、某一属性差异对知识进行差异分别的思也非常形象地了解了平面直角坐标系的特点.这也体现了数形想即为分类思想方法.这既属于一种基础的数学思想,同时也结合数学思想方法的应用.是一种重要的数学思想方法.从一般到特殊、从抽象到直观、从三、归纳总结模糊到清晰,明确的学习目标和清楚的思维过程是分类思想方综上所述,作为初中数学课程教学的精髓和灵魂,每一种法应用的特点.对初中数学教材进行分析不难得知,绝大多数数学思想方法的学习和

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。