江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.2坐标系与参数方程第2课时参数方程课件.pptx

江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.2坐标系与参数方程第2课时参数方程课件.pptx

ID:52871288

大小:5.26 MB

页数:66页

时间:2020-03-29

江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.2坐标系与参数方程第2课时参数方程课件.pptx_第1页
江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.2坐标系与参数方程第2课时参数方程课件.pptx_第2页
江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.2坐标系与参数方程第2课时参数方程课件.pptx_第3页
江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.2坐标系与参数方程第2课时参数方程课件.pptx_第4页
江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.2坐标系与参数方程第2课时参数方程课件.pptx_第5页
资源描述:

《江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.2坐标系与参数方程第2课时参数方程课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第2课时参数方程第十二章§12.2坐标系与参数方程KAOQINGKAOXIANGFENXI考情考向分析了解参数的意义,重点考查直线参数方程及圆、椭圆的参数方程与普通方程的互化,往往与极坐标结合考查.在高考选做题中以解答题的形式考查,属于低档题.NEIRONGSUOYIN内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PARTONE知识梳理1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以______________从参数方程得到普通方程.(2)如果知

2、道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程.ZHISHISHULI通过消去参数2.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y-y0=tanα(x-x0)__________________________圆___________(θ为参数)椭圆________________________抛物线y2=2px(p>0)(t为参数)x2+y2=r2基础自测JICHUZICE题组一 思考辨析1.判断下列结论

3、是否正确(请在括号中打“√”或“×”)123456√√√×123456题组二 教材改编123456所以曲线对应的直角坐标方程为(x+1)2+(y-2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2).(-1,2)123456直线l2的方程为y=-2x+1,斜率为-2.题组三 易错自纠123456解将直线l的参数方程化为普通方程为y-2=-3(x-1),因此直线l的斜率为-3.123456得(x+2)2+y2=1,表示圆心为(-2,0),半径为1的圆.123456123456∴P到直

4、线l的距离的最大值为d+r=5.1234562题型分类 深度剖析PARTTWO题型一 参数方程与普通方程的互化自主演练(1)写出曲线C的参数方程,直线l的普通方程;直线l的普通方程为2x+y-6=0.(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求PA的最大值与最小值.解曲线C上任意一点P(2cosθ,3sinθ)到l的距离为思维升华消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.(2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些

5、方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.题型二 参数方程的应用师生共研(1)若a=-1,求C与l的交点坐标;当a=-1时,直线l的普通方程为x+4y-3=0.解直线l的普通方程是x+4y-4-a=0,所以a=-16.综上,a=8或a=-16.思维升华(1)解决直线与椭圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与椭圆的位置关系来解决.(2)对于形如(t为参数),当a2+

6、b2≠1时,应先化为标准形式后才能利用t的几何意义解题.(1)写出椭圆C的参数方程及直线l的普通方程;(2)设A(1,0),若椭圆C上的点P满足到点A的距离与到直线l的距离相等,求点P的坐标.由AP=d,得3sinθ-4cosθ=5,题型三 极坐标方程和参数方程的综合应用师生共研(1)求曲线C的普通方程;思维升华在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷的解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一

7、种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.(1)求C2与C3交点的直角坐标;跟踪训练2在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:.解曲线C2的直角坐标方程为x2+y2-2y=0,(2)若C1与C2相交于点A,C1与C3相交于点B,求AB的最大值.解曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.3课时作业PARTTHREE基础保分练123456

8、7891011121.已知在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,求以极点为圆心且与直线l相切的圆的极坐标方程.∴以极点为圆心且与直线l相切的圆的极坐标方程为ρ=1.123456789101112解曲线C1,C2化为普通方程和直角坐标方程分别为x2=2y,x+y-4=0,因为判别式Δ>0,所以方程有两个实数解.故曲线C1与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。