欢迎来到天天文库
浏览记录
ID:52683419
大小:1.21 MB
页数:74页
时间:2020-03-29
《初一奥数测试题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、初一数学竞赛系列训练(12)一、选择题1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条A.6 B.7 C.8 D.92.平面上三条直线相互间的交点个数是 ( )A.3 B.1或3 C.1或2或3 D.不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( )A.36条 B.33条 C.24条 D.21条4.已知平面中有个点三个点在一条直线上,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这个点作一条直线,那么一共可以画出38条不同的直线,这时等于()(A
2、)9(B)10(C)11(D)125.若平行直线AB、CD与相交直线EF、GH相交成如图示的图形,则共得同旁内角( )A.4对 B.8对 C.12对 D.16对6.如图,已知FD∥BE,则∠1+∠2-∠3=()A.90° B.135° C.150° D.180°第7题二、填空题7.如图,已知AB∥CD,∠1=∠2,则∠E与∠F的大小关系;8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还有交点9.平面上3条直线最多可分平面为个部分。10.如图,已知AB∥CD∥EF,PS^GH于P,∠FRG=110°,则∠PSQ=。11.已知A、B是直
3、线L外的两点,则线段AB的垂直平分线与直线的交点个数是。12.平面内有4条直线,无论其关系如何,它们的交点个数不会超过个。三、解答题13.已知:如图,DE∥CB,求证:∠AED=∠A+∠B14.已知:如图,AB∥CD,求证:∠B+∠D+∠F=∠E+∠G第13题第14题15.如图,已知CB^AB,CE平分∠BCD,DE平分∠CDA,∠EDC+∠ECD=90°,求证:DA^AB16.平面上两个圆三条直线,最多有多少不同的交点?17.平面上5个圆两两相交,最多有多少个不同的交点?最多将平面分成多少块区域?18.一直线上5点与直线外3点,每两点确定一条直线,最多确定多少条不同直线
4、?19.平面上有8条直线两两相交,试证明在所有的交角中至少有一个角小于23°。20.平面上有10条直线,无任何三条交于一点,欲使它们出现31个交点,怎样安排才能办到?画出图形。初一数学竞赛系列训练(12)答案1.5个点中任取2点,可以作4+3+2+1=10条直线,在一直线上的3个点中任取2点,可作2+1=3条,共可作10-3+1=8(条)故选C2.平面上3条直线可能平行或重合。故选D3.对于3条共点的直线,每条直线上有4个交点,截得3条不重叠的线段,3条直线共有9条不重叠的线段对于3条不共点的直线,每条直线上有5个交点,截得4条不重叠的线段,3条直线共有12条不重叠的线段
5、。故共有21条不重叠的线段。故选D4.由个点中每次选取两个点连直线,可以画出条直线,若三点不在一条直线上,可以画出3条直线,若四点不在一条直线上,可以画出6条直线,∴整理得∵n+9>0∴∴选B。5.直线EF、GH分别“截”平行直线AB、CD,各得2对同旁内角,共4对;直线AB、CD分别“截”相交直线EF、GH,各得6对同旁内角,共12对。因此图中共有同旁内角4+6=16对6.∵FD∥BE∴∠2=∠AGF∵∠AGC=∠1-∠3∴∠1+∠2-∠3=∠AGC+∠AGF=180°∴选B7.解:∵AB∥CD (已知) ∴∠BAD=∠CDA(两直线平行,内错角相等)∵∠1=∠2
6、 (已知)∴∠BAD+∠1=∠CDA+∠2(等式性质)即∠EAD=∠FDA ∴AE∥FD ∴∠E=∠F8.解:每两点可确定一条直线,这5点最多可组成10条直线,又每两条直线只有一个交点,所以共有交点个数为9+8+7+6+5+4+3+2+1=45(个)又因平面上这5个点与其余4个点均有4条连线,这四条直线共有3+2+1=6个交点与平面上这一点重合应去掉,共应去掉5×6=30个交点,所以有交点的个数应为45-30=15个9.可分7个部分10.解∵AB∥CD∥EF∴∠APQ=∠DQG=∠FRG=110°同理∠PSQ=∠APS∴∠PSQ=∠APQ-∠SPQ=∠DQG-∠
7、SPQ=110°-90°=20°11.0个、1个或无数个1)若线段AB的垂直平分线就是L,则公共点的个数应是无数个;2)若AB^L,但L不是AB的垂直平分线,则此时AB的垂直平分线与L是平行的关系,所以它们没有公共点,即公共点个数为0个;3)若AB与L不垂直,那么AB的垂直平分线与直线L一定相交,所以此时公共点的个数为1个12.4条直线两两相交最多有1+2+3=6个交点13.证明:过E作EF∥BA∴∠2=∠A(两直线平行,内错角相等)DE∥CB,EF∥BA∴∠1=∠B(两个角的两边分别平行,这两个角相等)∴∠1+∠2=∠B+∠
此文档下载收益归作者所有