欢迎来到天天文库
浏览记录
ID:52549340
大小:153.00 KB
页数:4页
时间:2020-03-28
《§2.5等比数列前n项和公式教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、§2.5等比数列前n项和公式教学设计一、教材分析1、教学内容:《等比数列的前n项和》是高中数学人教版《必修5》第二章《数列》第5节的内容,教学大纲安排本节内容授课时间为两课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导过程并充分揭示公式的结构特征、内在联系及公式的简单应用.2、教材分析:《等比数列的前n项和》是数列这一章中的一个重要内容,就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化
2、归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体.二、学情分析1、知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用.2、认知水平与能力:高一学生初步具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和
3、公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生也往往容易忽略,尤其是在后面使用的过程中容易出错.3、任教班级学生特点:我班学生基础知识还行、思维较活跃,应该能在教师的引导下独立、合作地解决一些问题.三、目标分析教学目标依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:1.知识与技能理解用错位相减法推导等比数列前项和公式的过程,掌握公式的特点,并在此基础
4、上能简单的应用公式.2.过程与方法在推导公式的过程中渗透类比,方程,特殊到一般的数学思想、方法,优化学生思维品质.3.情感态度与价值观通过故事引入,学生自主探索公式,激发他们的求知欲,体验错位相减法所折射出的数学方法美及学好数学的必要性.教学重、难点1.重点:等比数列的前n项和公式的推导和公式的简单应用.2.难点:由研究等比数列的结构特点推导出等比数列的前n项和公式四、教学模式与教法、学法教学模式 :本课采用“探究—发现—应用”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法引导.学生的学法:突出探
5、究、发现与应用.五、教学过程:教学过程教学内容师生互动设计意图复习回顾1、等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列。2、等比数列通项公式:3、等差数列前n项和公式:师提出问题,学生思考、回答问题引导学生复习等比数列各项之间的特点:从第二项起每一项比前一项多乘以q,从而为用“错位相减法”求等比数列前n项和埋下伏笔.探索新知一颗麦粒引发的最悲剧奖励故事:“国王对国际象棋的发明者的奖励”相传古印度国王为奖赏国际象棋的发明者,问他有什么要求,发明者说:“
6、请在棋盘的第1个格子里放上1颗麦粒,在第2个格子里放上2颗麦粒,在第3个格子里放上4颗麦粒,依次类推,每个格子放的麦粒数都是前一个格子里放的麦粒数的2倍,直到放完64个格子为止。请给我足够的粮食来实现上述要求。”你认为国王有能力满足发明者上述要求吗?思考:如何求出这个和?师:勾起悬念,介绍故事内容,引导学生积极思考,感受数学的重要生:积极思考,感受数学的重要,下定决心要学好数学。用广为流传的故事,以趣引思,激发学生学习热情.领悟数学应用价值解:①②②-①得:新知:等比数列的前n项和公式设等比数列,它的前n项和是,公比
7、q≠0思考:能否用?因为,则上式就转化为问:等式右边各项“长相”上有什么特点?即:从第二项起每一项比前一项多乘以q.师:因此,如果两边同时乘以公比q从而有:方法:错位相减法然后?……①再完善公式,对q=1这一特殊情况,让学生先犯错,再纠错结论:当时,①或②当q=1时,思考:什么时候用公式①,什么时候用公式②?当已知时用公式①当已知时用公式②师:引导学生分析这个数列的特点,用错位相减法求和。生:在老师的指导下求出这个数列的和。师:怎么推导等比数列前n项和公式?引导学生思考生:思考,以小组合作的形式进行推导师:让学生思考
8、生:思考,并发现公式的特点及应用规律设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围.在教师的指导下,让学生经历从特殊到一般,从已知到未知,步步深入的过程,让学生自己探究公式,从而体验到学习的愉快和成就感.剖析公式中的基本量及结构特征,识记公式.下列数列为等比数列,判断正误动手试试①()②()思考:能用等比数列前
此文档下载收益归作者所有