晶格振动Ⅱ-热学性质.ppt

晶格振动Ⅱ-热学性质.ppt

ID:52317010

大小:603.51 KB

页数:44页

时间:2020-04-04

晶格振动Ⅱ-热学性质.ppt_第1页
晶格振动Ⅱ-热学性质.ppt_第2页
晶格振动Ⅱ-热学性质.ppt_第3页
晶格振动Ⅱ-热学性质.ppt_第4页
晶格振动Ⅱ-热学性质.ppt_第5页
资源描述:

《晶格振动Ⅱ-热学性质.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四章晶格振动Ⅱ—热学性质晶态固体的热学性质来源于固体中原子的振动(晶格振动)和电子运动两方面的贡献,本章主要讨论与晶格振动密切相关的热学性质(热容、热导及热膨胀等),或者说晶格振动对热学性质的贡献,而关于电子运动对热学性质贡献的有关内容将在固体电子论中介绍。§4.1固体的热容§4.1.1晶体热容的基本物理意义我们知道,热容是物体温度升高1K所需要增加的能量。热容是分子热运动的能量随温度而变化的一个物理量。单位是J/K。不同温度下,物体的热容不一定相同,所以在温度T时物体的热容为(4.1-1)显然,物体的质量不同,热容不同。1g物质的热容称为比热容,

2、常用小写字母c表示,单位是J/(K·g),一摩尔物质的热容称为摩尔热容,单位是J/(K·mol)。工程上所用的平均热容是指物质从温度T1到T2所吸收的热量的平均值(4.1-2)平均热容是比较粗略的,(T2-T1)的范围愈大,精度愈差,应用时要特别注意适用的温度范围。物体的热容还与它的热过程有关,假如加热过程是恒压条件下进行的,所测定的热容称为恒压热容,常用字母CP表示。假如加热过程保持物体容积不变,所测定的热容称为恒容热容。常用字母CV表示。即(4.1-3)(4.1-4)式中:Q为热量,为固体的平均内能,H为焓。由于恒压加热过程中,物体除温度升高外,

3、还要对外界做功,所以温度每提高1K需要吸收更多的热量,即CP>CV。CP的测定比较简单,但CV更有理论意义,因为它可以直接从系统的能量增量计算。根据热力学第二定律可以导出CP和CV的关系,即(4.1-5)式中是体膨胀系数,K-1;是压缩系数,m2/N;是摩尔容积,m3/mol。对于凝聚态物质的CP和CV的差异可以忽略,CP-CV的差值随温度的降低而减小。这是因为温度降低时其内能随温度的变化很小。在高温时,二者的差别就相当明显。§4.1.2固体的热容理论固态晶体的热容理论是依据固体中原子热振动的特点,从理论上阐明热容的物理本质,并建立热容随温度变化的定

4、量关系。由于固体的内能一般包括晶格振动能量和电子运动的能量,因此固体的热容主要有两部分贡献:一是来源于晶格振动,称为晶格热容;一是来源于电子运动,称为电子热容。在不同温度下,晶格振动对热容的贡献和电子运动对热容的贡献是不同的,当温度相当低时,电子热容对固体热容的贡献才显得重要,一般情况下,电子热容是很小的,因此,本节只讨论晶格振动对热容的贡献。晶格热容理论的发展过程经历了经典的杜隆-珀替(Dulong-Petit)定律和量子热容理论(包括爱因斯坦(Einstein)热容理论和德拜(Debye)热容理论)。一、杜隆-珀替(Dulong-Petit)定律

5、经典的热容理论是把固体中的原子看成是彼此孤立地作热振动,并认为原子振动的能量是连续的。这样根据经典统计理论的能量均分定理,每一个简谐振动的平均能量是,其中是平均动能,是平均势能,是玻耳兹曼常数。一个谐振子的能量为(4.1-6)若固体有N个原子,则有3N个简谐振动模,总的平均能量为(4.1-7)根据式(7.1-6)可得单个谐振子对热容的贡献为(4.1-8)如果N是1摩尔原子中的原子数,即,则根据式(4.1-7)固体的摩尔原子比热(定容摩尔热容)为(4.1-9)这就是杜隆-珀替(Dulong-Petit)定律。式(7.1-9)说明,固体的摩尔热容是一个固

6、定不变的常数,且与温度无关。实验证明杜隆-珀替定律只适用于部分金属,且其适用温度范围较窄。在高温和低温下与实验结果不符,更不能解释或随温度下降而减小的实验事实。二、晶格热容的量子理论为了解决杜隆-珀替定律与实验的矛盾,爱因斯坦(Einstein)发展了普朗克的量子假说,建立了晶格的量子热容理论。根据玻耳兹曼统计理论,近独立粒子系统中的粒子的平均能量为(4.1-10)式中z为配分函数,;。对于近独立粒子系统中的量子谐振子有,并且由于。代入上式得到(4.1-11)上式中。所以有(4.1-12)将式(4.1-12)对温度求微商就得到频率为的振子对晶格热容的

7、贡献为(4.1-13)比较上式与式(4.1-8)可知,谐振子对热容的贡献与振动频率有关。对于高温极限的情形,,即,将式(4.1-13)中的指数按的级数展开,得到(4.1-14)将上式与式(4.1-8)比较可知,在较高温度时,量子理论得到的结果与经典的杜隆-珀替定律一致。只是因为当振子能量远大于能量量子()时,量子化的效应可以忽略不计。对于低温极限的情形,,则,故式(4.1-13)化为(4.1-15)可以证明,当时,。也就是说,根据量子理论,晶格热容将随而趋于零。这是因为振动能量是量子化的,在时,振动被“冻结”在基态,很难被热激发,因而对热容的贡献趋于

8、零。对于由N个原子组成的晶体,由于每个原子有3个自由度,因此晶体有3N个正则频率,故晶体的平均能量为(4.1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。