比例应用题教案.docx

比例应用题教案.docx

ID:52232177

大小:341.98 KB

页数:20页

时间:2020-03-25

比例应用题教案.docx_第1页
比例应用题教案.docx_第2页
比例应用题教案.docx_第3页
比例应用题教案.docx_第4页
比例应用题教案.docx_第5页
资源描述:

《比例应用题教案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、比例应用题适用学科小数竞赛适用年级小学六年级适用区域成都课时时长(分钟)60知识点比例应用题学习目标1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题教学重点运用正反比例解决实际问题教学难点运用正反比例解决实际问题教学过程一、课堂导入比与比例应用题是小学数学的重要内容,也是小学数学重点和难点之一.一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律.因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系

2、与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带来一定困难.二、复习预习复习:前面我们学过了分数与百分数的应用,其中分数与百分数之间主要抓住数量之间以及“量”、“率”之间的相依关系.这节课我们来学习在应用题中常考的另一种类型----比例的应用.预习:什么是比例?它主要讲的是什么之间的关系?怎么样来解这种题?三、知识讲解考点/易错点1比和比例的性质性质1:若a:b=c:d,则(a+c):(b+d)=a:b=c:d;性质2:若a:b=c:d,则(a-c):(b-d)=a:b=c:d;性质3:若a:b=c:d,则(a+

3、xc):(b+xd)=a:b=c:d;(x为常数)性质4:若a:b=c:d,则a×d=b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.主要比例转化实例①  ;;;②  ;(其中);③ ; ;;④,;;⑤的等于的,则是的,是的.考点/易错点2按比例分配与和差关系⑴按比例分配例如:将个物体按照的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与的比分别为和,所以甲分配到个,乙分配到个.⑵已知两组物体的数量比和数量差,求各个类别数量的

4、问题例如:两个类别、,元素的数量比为(这里),数量差为,那么的元素数量为,的元素数量为,所以解题的关键是求出与或的比值.考点/易错点3比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。在解答分数应用题时,要注意以下几点:1.题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。2.若题中数量发生变化的,一般要选择不变量为单位“1”。3.应用正、反比例性

5、质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例。找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法。4.题中有明显的等量关系,也可以用方程的方法去解。5.赋值解比例问题四、例题精析【例题1】【题干】已知甲、乙、丙三个数,甲等于乙、丙两数和的,乙等于甲、丙两数和的,丙等于甲、乙两数和的,求.【答案】3:4:5【解析】由甲等于乙、丙两数和的,得到甲等于三个数和的,同样的乙等于甲、丙两数和的,同样的丙等于甲、乙两个数和的,所以.【例题2】【题干】已知甲、乙、丙三个数,甲的一

6、半等于乙的倍也等于丙的,那么甲的、乙的倍、丙的一半这三个数的比为多少?【答案】16:12:9【解析】甲的一半、乙的倍、丙的这三个数的比为,所以甲、乙、丙这三个数的比为即,化简为,那么甲的、乙的倍、丙的一半这三个数的比为即,化简为.【例题3】【题干】如下图所示,圆与圆的面积之和等于圆面积的,且圆中的阴影部分面积占圆面积的,圆的阴影部分面积占圆面积的,圆的阴影部分面积占圆面积的.求圆、圆、圆的面积之比.【答案】20:15:1【解析】设与的共同部分的面积为,与的共同部分的面积为,则根据题意有,,,于是得到,这条式子可化简为,所以.最后得到.

7、【例题4】【题干】在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是,则甲捐元,乙捐元,丙捐元.【答案】甲:38元,乙:22元,丙:20元【解析】由于甲比丙多捐18元,所以甲、乙所捐资的和比乙、丙所捐资的和多18元,那么甲、乙所捐资的和为:(元),乙、丙所捐资的和为元.所以,甲捐了(元),乙捐了(元),丙捐了(元).【例题5】【题干】一班和二班的人数之比是,如果将一班的名同学调到二班去,则一班和二班的人数比变为.求原来两班的人数.【答案】42人【解析】原来一班的人数为两班总

8、人数的,调班后一班的人数是两班人数的,调班前后一班人数的比值为,所以一班原来的人数为人,二班原来的人数为人.【例题6】【题干】甲乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。