资源描述:
《一次函数及其图象练习题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一次函数及其图象练习题一、选择题:(每小题3分,共24分)1.下列函数中,y是x的一次函数的是()毛A.y=2x2+1;B.y=x-1+1C.y=-2(x+1)D.y=2(x+1)22.下列关于函数的说法中,正确的是()A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数3.若函数y=(3m-2)x2+(1-2m)x(m为常数)是正比例函数,则()A.m=;B.m=;C.m>;D.m<4.下列函数:①y=-8x;②y=;③y=8x2;④y=
2、8x+1;⑤y=.其中是一次函数的有()A.1个B.2个C.3个D.4个5.若函数y=(m-3)+x+3是一次函数(x≠0),则m的值为()A.3B.1C.2D.3或16.过点A(0,-2),且与直线y=5x平行的直线是()A.y=5x+2B.y=5x-2C.y=-5x+2D.y=-5x-27.将直线y=3x-2平移后,得到直线y=3x+6,则原直线()A.沿y轴向上平移了8个单位B.沿y轴向下平移了8个单位C.沿x轴向左平移了8个单位D.沿x轴向右平移了8个单位8.汽车由天津开
3、往相距120km的北京,若它的平均速度是60km/h,则汽车距北京的路程s(km)与行驶时间t(h)之间的函数关系式是()A.s=60t;B.s=120-60tC.s=(120-60)tD.s=120+60t二、填空题:(每小题3分,共27分)1.若y=(n-2)是正比例函数,则n的值是________.2.函数y=x+4中,若自变量x的取值范围是-34、若长增加xcm,则它的面积S(cm2)与x(cm)之间的函数关系式是_____,它是______函数,它的图象是_______.5.已知函数y=,当m=______时,它是正比例函数,这个正比例函数的关系式为_______;当m=________时,它是一次函数,这个一次函数的关系式为_______.6.把函数y=2x的图象沿着y轴向下平移3个单位,得到的直线的解析式为_____.7.两条直线中,当a________,b______时,L1∥L2.-4-8.直线y=-3x+2和y=3x+2是否平行?
5、_________.9.一棵树现在高50cm,若每月长高2cm,x月后这棵树的高度为ycm,则y与x之间的函数关系式是________.三、基础训练:(共10分)求小球速度v(米/秒)与时间t(秒)之间的函数关系式:(1)小球由静止开始从斜坡上向下滚动,速度每秒增加2米;(2)小球以3米/秒的初速度向下滚动,速度每秒增加2米;(3)小球以10米/秒的初速度从斜坡下向上滚动,若速度每秒减小2米,则2秒后速度变为多少?何时速度为零?四、提高训练:(每小题9分,共27分)1.m为何值时,函数y=(
6、m+3)+4x-5(x≠0)是一次函数?2.已知一次函数y=(k-2)x+1-:(1)k为何值时,函数图象经过原点?(2)k为何值时,函数图象过点A(0,3)?(3)k为何值时,函数图象平行于直线y=2x?3.甲每小时走3千米,走了1.5小时后,乙以每小时4.5千米的速度追甲,设乙行走的时间为t(时),写出甲、乙两人所走的路程s(千米)与时间t(时)之间的关系式,并在同一坐标系内画出函数的图象.-4-五、中考题与竞赛题:(共12分)某机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若干
7、升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示,回答下列问题.(1)机动车行驶几小时后加油?(2)求加油前油箱余油量Q与行驶时间t的函数关系,并求自变量t的取值范围;(3)中途加油多少升?(4)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由.-4-答案:-4-一、1.C2.B3.A4.C5.D6.B7.A8.B二、1.-12.18、x-37.=2≠-8.不平行9.y=50+2x三、(1)v=2t(2)v=3+2t.(3)解:v=10-2t,当t=2时,v=10-2t=6(米/秒),∴2秒后速度为6米/秒;当v=0时,10-2t=0,∴t=5,∴5秒后速度为零.四、1.解:当m+3=0,即m=-3时,y=4x-5是一次函数;当m+3≠0时,由2m+1=1,得m=0,∴当m=0时,y=7x-5是一次函数;由2m+1=0,得m=-.∴当m=-