微分几何学历史简介.doc

微分几何学历史简介.doc

ID:51833380

大小:32.00 KB

页数:5页

时间:2020-03-16

微分几何学历史简介.doc_第1页
微分几何学历史简介.doc_第2页
微分几何学历史简介.doc_第3页
微分几何学历史简介.doc_第4页
微分几何学历史简介.doc_第5页
资源描述:

《微分几何学历史简介.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、题目微分几何完成人姓名张克然拟对接课程微分几何微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定

2、曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究

3、,使微分几何学同黎曼几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。微分几何学的研究对数学其他分支以及力学、物理学、工程学等的影响是不可估量的。如:伪球面上的几何与非欧几何有密切关系;测地线和力学、变分学、拓扑学等有着深刻的联系,是内容丰富的研究课题。而由欧式几何到微分几何的历史变迁还要从以下说起。几何是geo

4、metry的音译。其词头geo是“土地”的意思,词尾metry是“测量学”的意思,合起来是“土地测量学”的意思。这反映了几何学起源于实际问题。古希腊的欧拉写了一本书,中文译名为“几何原本”,内容包含平面几何学、空间几何学和数论,总结了古希腊的很多数学知识,可能是从古至今影响最大的科学著作。中学课本中的平面几何学内容大都来源于《几何原本》,从中可以学到古希腊人用以逻辑为基础的理性思维进行科学研究的方法。爱因斯坦认为一个人如果在年轻时对平面几何从没产生过兴趣的话,恐怕很难在科学上做出重要发现。几何学的下一个进

5、展由哲学家笛卡尔取得,据说他身体不好,经常需要卧床休息,有一次看到在墙角织网的蜘蛛,受启发引进了坐标的概念。由此产生了解析几何学,使得代数方法可以在几何问题中应用。例如,圆周、椭圆、双曲线、抛物线等古希腊人即开始研究的几何对象有很简单的代数描述。解析几何学促进了微积分的诞生。由牛顿和莱布尼茨创立的这门学问在现代科学中的重要性是不用赘述的。将微积分应用于几何问题的研究就是所谓微分几何。最初研究的是三维空间中的曲线、曲面。高斯于1827年写了一本50页左右的小书,研究曲面的微分几何,包括大学学的微分几何的主要

6、内容。这本书标志着微分几何学的诞生。高斯当时主持一项土地测量的的项目,他写这本是为了给这项工作一个理论基础。高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。同高斯一样,黎曼工作的主要领域也不是几何学,而是单复变函数,但他是现代微分几何与解析数论的创始人。在他为取得大学教授资格的公开讲演中,黎曼提出了微分几何学发展的新思想,其中包括流形

7、、Riemann度量、Riemann曲率等重要概念。简单的说,就是用局部坐标和坐标变换来描述一个空间,用Riemann度量做最基本的几何量,空间的几何性质如弯曲程度由度量用特定方式决定。随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。在我国,陈省身先生是20世纪重要的微分几何学家,被誉为“微分几何之父”。陈省身先生二十世纪三十年代在清华大学数学系读硕士,抗日战争中在西南联大任教授,后回南开大学。陈省身先生

8、的工作建立了流形的局部几何性质与整体的拓扑性质的关系。他引进的陈示性类是几何学发展的一个里程碑,以后的重要进展无不建立在其基础上,例如高维Riemann-Roch定理、指标理论等等。陈先生1984年度的Wolf奖的证书上写到:“他在整体微分几何上的卓越成就,其影响遍及整个数学。”

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。