圆周角与圆心角.pptx

圆周角与圆心角.pptx

ID:51763811

大小:240.93 KB

页数:23页

时间:2020-03-04

圆周角与圆心角.pptx_第1页
圆周角与圆心角.pptx_第2页
圆周角与圆心角.pptx_第3页
圆周角与圆心角.pptx_第4页
圆周角与圆心角.pptx_第5页
资源描述:

《圆周角与圆心角.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三节圆周角和圆心角的关系(一)曾文其第三章圆回顾与思考如图1,∠AOB是角。OAB如图2,AB=CD,则∠AOB与∠COD的大小关系是:。BAOCD圆心相等用心想一想,马到功成在射门游戏中,球员射中球门的难易与他所处的位置B对球门AC的张角(∠ABC)有关。用心想一想,马到功成如图,当他站在B,D,E的位置射球时,对球门AC的张角的大小相等吗?你能观察到这三个角有什么共同特征吗?用心想一想,马到功成为解决这个问题我们先来研究一种角。观察图中的∠ABC,顶点在什么位置?角的两边有什么特点?ABC用心想一想,马到功成观察图中的∠ABC,可以发现,它的顶点在圆上,它的两边分别与圆还有另

2、一个交点。像这样的角,叫做圆周角。ABC请同学们考虑两个问题:(1)顶点在圆上的角是圆周角吗?(2)角的两边都和圆相交的角是圆周角吗?为解决这个问题,我们先回答下面的问题。下列各图形中的角是不是圆周角?请说明理由。ABCDE由圆周角的定义可知,只有C是圆周角,其它都不是。你能总结出圆周角的特征吗?圆周角有两个特征:①角的顶点在圆上;②两边在圆内的部分是圆的两条弦。用心想一想,马到功成我们再来研究圆周角的性质。为了解决这个问题,我们先研究一条弧所对的圆周角与它所对的圆心角之间的关系。请同学们在圆上确定一条劣弧,画出它所对的圆心角与圆周角。AC用心想一想,马到功成归纳同学们的意见我们得

3、到以下几种情况。①∠ABC的一边BC经过圆心O。②∠ABC的两边都不经过圆心O。③∠ABC的两边都不经过圆心O。请问∠ABC与∠AOC它们的大小有什么关系?说说你的想法,并与同伴进行交流。BAOC①ABCO②BACO③下面我们首先考虑同学们列举的一种特殊情况,即∠ABC的一边BC经过圆心O。BAOC∵∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO。∵OA=OB,∴∠ABO=∠BAO。∴∠AOC=2∠ABO,∴∠ABC=∠AOC。12如图,我们可以观察到∠AOC是△ABO的外角,∠ABC是△ABO的一个内角,它们两者存在一定关系.下面我们首先考虑同学们列举的一种特殊情况,即

4、∠ABC的一边BC经过圆心O。BAOC∵∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO。∵OA=OB,∴∠ABO=∠BAO。∴∠AOC=2∠ABO,∴∠ABC=∠AOC。12那么当∠ABC的两边都不经过圆心O时,∠ABC与∠AOC又有怎样的大小关系呢?ABCOBACO我们可以考虑把这两种情况分别转化成刚才的特殊情形来考虑。ABCO也就是借用直径,连接BO并延长,与圆相交于点D。D(此时我们得到与图①同样的情形)132BAOC①∵∠1是△ABO的外角,∴∠1=∠2+∠3。∵OA=OB,∴∠2=∠3。∴∠1=2∠2,∴∠2=∠1。125412同理,∠4=∠5。12∴∠2+∠4

5、=(∠1+∠5)。∴∠ABC=∠AOC。12BACOBAOC①如图,连接BO并延长,与圆相交于点D。(此时我们得到与图①同样的情形)D∵∠AOD是△ABO的外角,∴∠AOD=∠A+∠ABO。∵OA=OB,∴∠A=∠ABO。∴∠AOD=2∠ABD,∴∠ABD=∠AOD。12BACOBAOC①如图,连接BO并延长,与相交于点D。(此时我们得到与图①同样的情形)D∵∠AOD是△ABO的外角,∴∠ABD=∠A+∠ABO。∵OA=OB,∴∠A=∠ABO。∴∠AOD=2∠ABD,∴∠ABD=∠AOD。12同理,∠CBD=∠COD。12BACOBAOC①如图,连接BO并延长,与相交于点D。(此时

6、我们得到与图①同样的情形)D∵∠AOD是△ABO的外角,∴∠ABD=∠A+∠ABO。∵OA=OB,∴∠A=∠ABO。∴∠AOD=2∠ABD,∴∠ABD=∠AOD。12同理,∠CBD=∠COD。12∴∠ABD-∠CBD=∠AOD-∠COD=(∠AOD-∠COD)。∴∠ABC=∠AOC12121212认真观察,探求结果通过对三种情形的证明,同学们再认真观察图形,你会得到什么结果?BAOCABCOBACO一条弧所对的圆周角等于它所对的圆心角的。一半AOCB一题多变如图,在⊙O中,∠BOC=50°,则∠BAC=。点拨:此题要选择关键点:∠BOC与∠BAC对着BC,因此∠BOC等于∠BAC的

7、2倍。25°AOCB一题多变如图,在⊙O中,∠BOC=50°,则∠BAC=。变化题2:如图,∠BAC=40°,则∠OBC=。ABCO变化题1:如图,点A,B,C是⊙O上的三点,∠BAC=40°,则∠BOC=。25°50°80°由∠BAC=40°可得∠BOC=80°,再由△BOC是等腰三角形可求得∠OBC。开拓创新试一试如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC,∠ACB与∠BAC的大小有什么关系?为什么?ABCO请同学们认真观察∠AOB与∠ACB,∠B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。