浙江大学电路原理甲课件 拉普拉斯变换(C).ppt

浙江大学电路原理甲课件 拉普拉斯变换(C).ppt

ID:51498447

大小:2.59 MB

页数:59页

时间:2020-03-25

浙江大学电路原理甲课件 拉普拉斯变换(C).ppt_第1页
浙江大学电路原理甲课件 拉普拉斯变换(C).ppt_第2页
浙江大学电路原理甲课件 拉普拉斯变换(C).ppt_第3页
浙江大学电路原理甲课件 拉普拉斯变换(C).ppt_第4页
浙江大学电路原理甲课件 拉普拉斯变换(C).ppt_第5页
资源描述:

《浙江大学电路原理甲课件 拉普拉斯变换(C).ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、9.7网络函数的零点和极点分析线性系统网络函数的一般描述:为零点,为极点,为增益系数。极点取为输出,为激励,网络函数为:例:如图电路,1)1.网络函数的极点是系统固有的特征值取为输出,为激励,网络函数为:极点2)电路的冲击响应:极点3)4)电路的零输入响应:极点网络函数决定着系统暂态分量的形式和系统的稳定性。每一个极点代表着一个响应分量的形式,极点在复平面上的分布决定其响应形态。(如图)2.网络函数极点与系统稳定性的关系当(设无重极点)则讨论:左半平面极点为衰减过渡过程右半平面极点为增长过渡过程虚轴极点为正弦或直流响应由网络函数可判别电网络系统的稳定性。

2、有右半平面极点的系统是非稳定系统(自激振荡),通常用网络的冲击响应来判别稳定性。例:求图示电路的网络函数和频率响应。解:极点:3.网络函数极点与频率特性关系(稳态频率响应分析)设网络函数,令,则随变化关系称为频率特性。频率响应幅频特性:相频特性:例:图示的RLC串联电路中,分别以R、L、C上的电压作为输出,讨论三种输出的不同特性。解:电容电压作为输出令(零点对系统特性的影响)4.网络函数零点与频率特性关系电阻电压作为输出电感电压作为输出设电容电压作为输出:低通滤波器Frequency3.m电阻电压作为输出带通滤波器电感电压作为输出高通滤波器9.8网络函数

3、与稳态输出响应1)单位阶跃稳态响应由由终值定理单位阶跃激励的稳态响应值为(直流稳态)2)单位正弦激励的稳态响应稳态响应相量(复数)形式为一般正弦激励时有:例9:已知电路的网络函数1)当激励源时,求输出电压2)当激励源时,求输出稳态电压;3)当激励源时,求输出稳态电压;.解:1)2)3)冲激函数和阶跃函数激励下的响应关系系统的冲击响应是阶跃响应的导数(零状态)应用:求电路冲击响应时,可先求阶跃响应,再求导得冲击响应。例:求时的。解:由三要素法,直接导出时的冲击响应为9.9卷积积分1)网络过渡过程激励与响应关系a.由多个线性组合激励产生的零状态响应等于各个激

4、励产生的零状态响应之和。如图,设则b.激励延迟的零状态响应等于原激励零状态响应延迟。设则如图2)卷积积分的时域物理意义设单位冲击响应为,激励函数为,则任一微小脉冲的响应可写为的含义:t时刻前所有激励的累积响应组成了该时刻的电路状态(响应值)作用:若已知冲击响应(网络函数)情况,任意激励源作用下的零状态响应可由卷积积分计算。对从0到t的激励源作用进行积分,响应为当时有上式即为卷积积分公式.特别注意,当激励为分段连续函数时(见图),有例:图示电路,求的零状态响应。解:求,由运算电路求3)叠加积分设单位阶跃响应为,激励函数为,则系统的输出响应可写为特别注意,当

5、激励为分段函数时(见图),有例:图示电路,求的零状态响应。解:求,由三要素法求激励为分段函数9.10状态方程一、基本概念状态:电路(系统)状态是指确定该电路(系统)必须具备的最少信息,这些信息和从该时刻起输入的量能完全确定该系统以后任何时刻的状态。状态变量:状态变量是分析动态电路(系统)的独立变量。电路中状态变量一般为电感电流(磁链)和电容电压(电荷)。状态方程:由状态变量组成的描述系统变化关系的一阶微分方程组。(2)以后的电路状态,可由此时[初始条件]及求出。(1)任一瞬间状态变量已知,则结合外加激励可求出其余电路时的状态。整理后(标准方程)二、状态方

6、程的建立用KVL和KCL手工建立状态方程例:矩阵形式有记则有(状态方程标准形式)记——状态向量,——输入向量(激励)输出方程的建立:设电感电压和电容电流为系统输出量,把输出描述成状态变量与外部激励的关系有:写成标准形式有上式即为输出方程,记为线性系统中A,B,C,D矩阵均为常量。状态方程输出方程状态变量的初始值:计算仿真结果:例2列写图示电路的状态方程,并建立以为输出量的输出方程。解:取为状态变量,对节点列KCL:对LC列KVL:整理后得写成矩阵形式输出方程写成矩阵形式例3设试建立状态方程.1).选择状态变量电感电流和电容电压为状态变量.取电容支路为树支

7、,电感支路为连支,选3,4,6为树。2).标参考方向,选有向图及树状态方程的系统列写法单连支回路方程割集(节点)方程3).列出电容支路的割集(节点)电流方程和电感支路的单连支回路电压方程.4).列出其他支路的割集(节点)电流方程和单连支回路电压方程.节点方程回路方程含有状态变量导数的方程:补充方程:5).由补充方程解出非状态变量6).消去非状态变量,整理得状态方程:写成矩阵形式状态变量数激励源数*解法2电容等效为电压源,电感等效为电流源,用迭加定理直接写出电感电压和电容电流.模拟迭加法为电感两端的电压.对电感电压由迭加定理求:作用:1)作用:作用:作用:

8、合成后:同理,对电容C由迭加定理求合成后:对电感由迭加定理求合成后:包含有纯电容

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。