欢迎来到天天文库
浏览记录
ID:51303258
大小:325.00 KB
页数:14页
时间:2020-03-21
《待定系数法(通用).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、22.1 二次函数的图象和性质22.1.4二次函数y=ax2+bx+c的图象和性质第2课时 用待定系数法求二次函数的解析式y=ax2y=a(x-h)2y=a(x-h)2+ky=ax2+bx+cy=ax2+c用待定系数法求二次函数的解析式的几种常见的形式:(1)三点式:已知图象上的三个点的坐标,可设二次函数的解析式为__________________.(2)顶点式:已知抛物线的顶点坐标(h,k)及图象上的一个点的坐标,可设二次函数的解析式为_______________.以下有三种特殊情况:①当已知抛物线的顶点在原
2、点时,我们可设抛物线的解析式为___________;②当已知抛物线的顶点在y轴上或以y轴为对称轴,但顶点不一定是原点时,可设抛物线的解析式为_____________;③当已知抛物线的顶点在x轴上,可设抛物线的解析式为_________________,其中(h,0)为抛物线与x轴的交点坐标.知识点(3)交点式:已知抛物线与x轴的两个交点坐标(x1,0),(x2,0)及图象上任意一点的坐标,可设抛物线的解析式为____________________.y=a(x-x1)(x-x2)y=x2-x-2A知识点1:利用
3、“三点式”求二次函数的解析式1.由表格中信息可知,若设y=ax2+bx+c,则下列y与x之间的函数关系式正确的是()A.y=x2-4x+3B.y=x2-3x+4C.y=x2-3x+3D.y=x2-4x+82.已知二次函数y=ax2+bx+c的图象经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为_________________.x-101ax21ax2+bx+c83知识点2:利用“顶点式”求二次函数的解析式4.已知某二次函数的图象如图所示,则这个二次函数的解析式为()D5.已知抛物线的顶点坐
4、标为(4,-1),与y轴交于点(0,3),求这条抛物线的解析式.知识点3:利用“交点式”求二次函数的解析式6.如图,抛物线的函数表达式是()D7.已知一个二次函数的图象与x轴的两个交点的坐标分别为(-1,0)和(2,0),与y轴的交点坐标为(0,-2),求这个二次函数的解析式.解:由题意,设二次函数解析式为y=a(x+1)(x-2),把(0,-2)代入得-2=-2a,∴a=1,∴y=(x+1)(x-2),即y=x2-x-2DD8.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是()9.二次函数y=-x2+b
5、x+c的图象的最高点是(-1,-3),则b,c的值分别是()A.b=2,c=4B.b=2,c=-4C.b=-2,c=4D.b=-2,c=-4①③④10.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法中正确的是____________.(填序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=0.5;④在对称轴左侧,y随x增大而增大.11.已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)
6、,B(0,-3)两点,则这条抛物线的解析式为________________.y=x2-2x-3x…-2-1012…y…04664…y=-(x-1)2-2解:由题意设y=a(x-1)2-6,∵图象经过点(2,-8),∴-8=a(2-1)2-6,解得a=-2,∴y=-2(x-1)2-6,即y=-2x2+4x-815.已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x轴交于A,B两点.(1)试确定此二次函数的解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;
7、如果不在,试说明理由.16.(2014·安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的解析式,并求出当0≤x≤3时,y2的最大值.解:(1)答案不唯一,符合题意即可,如y1=2x2,y2=x2(2)∵函数y1的图象经过点A(1,1),则2-4m+2m2+1=1,解得m=
8、1,∴y1=2x2-4x+3,即y1=2(x-1)2+1.∵y1+y2与y1为“同簇二次函数”,∴可设y1+y2=k(x-1)2+1(k>0),则y2=k(x-1)2+1-y1,∴y2=(k-2)(x-1)2.由题意可知函数y2的图象经过点(0,5),则(k-2)×12=5,∴k-2=5,∴y2=5(x-1)2,即y2=5x2-10x+5.当0≤x≤3时,根
此文档下载收益归作者所有