关于人船模型的几个实例.doc

关于人船模型的几个实例.doc

ID:51180848

大小:49.50 KB

页数:2页

时间:2020-03-09

关于人船模型的几个实例.doc_第1页
关于人船模型的几个实例.doc_第2页
资源描述:

《关于人船模型的几个实例.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、关于人船模型的几个实例在中学物理各知识章节中,都有典型的物理模型。人船模型就是动量守恒定律一章中的理想模型。一.人船模型适用条件是由两个物体组成的系统,在水平方向动量守恒,在人与船相互作用前,都是静止的。例1.如图(一)长为L、质量为M的小船停在静水中,一个质量为m的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地的位移各是多少?解析:以人和船组成的系统为研究对象,在人从船头走到船尾的过程中,系统在水平方向上不受外力,所以在水平方向上动量守恒。人起步前系统的总动量为零。当人加速前进时,船同时向后加速运动,当人匀速前进时,船同时向

2、后匀速运动,当人停下来时,船也停下来。设某一时刻人对地的速度为v2,船对地的速度为v1,以人前进的方向为正方向,根据动量守恒定律有:mv2-Mv1=0,大小关系可以写成mv2=Mv1,在人从船头走到穿尾的过程中的每一时刻都满足动量守恒,因此每时每刻人和船的速度之比都与它们的质量成反比。我们知道若系统在全过程中动量守恒(或在某一方向动量守恒),那系统在全过程中的平均动量也守恒。在相互作用的过程中人和船所用时间是相等的,可以得出人的位移s2与船的位移s1之比,也等于它们的质量比,即ms2=Ms1.由图可以看出s1+s2=L解之得s1=mL/(m+M)

3、,s2=ML/(m+M)。在习题中,不乏出现人船模型的变形习题。二.人船模型的变形.例2.如图(二)气球的质量为M,下面拖一条质量不计的软梯,质量为m的人站在软梯上端距地面为H,气球保持静止状态,求:1)人安全到地面软梯的最小长度。2)若软梯的长为H,则人从软梯上端到下端时,人距地面多高。解:1)令气球上升的距离为h,而人对地下降H,根据人船模型的结论有mH=Mh,L=H+h,L=(M+m)H/M2)令气球上移S1,人下降S2,根据人船模型的结论有:MS1=mS2,S1+S2=H,h1=H-S2,解之得h1=mH/(m+M)例3.如图(三)一个质

4、量为M,底边边长为b的劈静止在光滑的水平面上,有一质量为m的小球由斜面顶部无初速滑到底部时,劈移动的距离是多少?解析:劈和小球组成的系统在水平面不受外力,故在水平方向动量守恒,令s1和s2为m和M对地的位移。根据推论有:ms1=Ms2根据题意有:s1+s2=b解之得s2=mb/(M+m)例4.如图(四)质量为M的均匀方形盒静置于光滑的水平面上,在其顶部的中央A点,以长度为5.0cm的细线悬吊一质量m=M/3的质点,开始时该质点静止且细线与铅直线夹角B为37°,设重力加速度为10m/s2,sin37°=3/5,释放质点后,对静止在地面上的观察者而言

5、下列说法正确的是()A.整个系统动量守恒B.整个系统在水平方向动量守恒C.质点达到最底点时,质点的速度为3.9cm/sD.质点达到右边最高点,M方形盒向左移1.5cm解析:如图L=5cm,S=Lsin37°,质点在最底点的速度为V1、水平位移为S1,方形盒的速度为V2、位移为S2,根据人船模型的结论有mV1=MV2、mS1=MS2。如图有S1+S2=S。根据机械能守恒定律有mgL(1-com37°)=mV12+MV22。解之得V1=cm/s,方形盒向左移动的距离为2S2=1.5cm。此题选B、C和D。例5.如图(五)质量为m半径为R的小球,放在半

6、径为2R质量为M=2m的大空心球内,大球开始静止在光滑的水平面上,两球心在同一水平线,当小球从图中所示的位置无初速沿内壁滑到最底点时,大球移动的距离为()AR/2BR/3CR/4DR/6解析:令小球的水平位移为s1,大球的水平位移为s2,两圆心之间的距离为R,则有:ms1+Ms2=R根据人船模型有:ms1=Ms2解之得s2=R/3三.多个物体组成的人船模型两个物体组成的人船模型也同样使用于多个物体组成的系统。例6.如图(六)在光滑的水平面上,有一长L=2m的木板C,它的两端各有一块挡板。C的质量为Mc=5Kg,C的正中央并排放着两个可视为质点的物

7、块A与B,质量分别为Ma=1Kg,Mb=4Kg。开始时A、B、C均静止,A、B间有少量的塑胶炸药,由于炸药爆炸,使得A以6m/s的速度水平向左滑动,如果A、B与C间的摩擦不计,而滑块若与挡板碰后都触粘在挡板上(爆炸和碰撞时间不计)1).当两个滑块都与挡板碰撞后,C的速度是多大?2).从爆炸开始,到两滑块都与挡板碰撞为止,板C通过的位移多大?解:1)系统在水平方向的动量守恒,所以C最后的速度为02)根据人船模型可做图(七)Sa、Sb、Sc分别表示A、B、C的对地位移,根据人船模型的结论有:McSc+MaSa=MbSbSa-Sc=L/2Sb+Sc=L

8、/2解之得Sc=0.3m可以看出,人船模型是对动量守恒定律的拓展,它把速度和质量的关系推广到质量和位移的关系。为我们提供了一种新的解题思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。