欢迎来到天天文库
浏览记录
ID:51162391
大小:560.21 KB
页数:9页
时间:2020-03-19
《根式与分数指数幂.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、合作探究探究点1n次方根的概念思考:类比平方根、立方根,猜想:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?【答案】a为正数:,a为负数:,0的为零,记为:=0.合作探究探究点1n次方根的概念归纳:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数这两种情况.合作探究探究点2根式的运算性质根式的运算性质:(1)当n为任意正整数时,()na.(2)当n为奇数时,()a;当n为偶数时,()
2、a
3、=.提示解题时注意分清()n和()二者的区别,对于前者满足
4、()na,后者则需对n分奇偶讨论.归纳小结1.准确认识根式记号:(1)n∈N,且n>1.(3)当n为大于1的偶数时,只有当a≥0时有意义,当a<0时无意义.(a≥0)表示a在实数范围内的一个n次方根,另一个是-,且(±)n=a.(4)式子对任意a∈R都成立.(2)当n为大于1的奇数时,对任意a∈R都有意义,它表示a在实数范围内惟一的一个n次方根(()n=a).归纳小结2.根式化简的技巧①熟记恒等式:(1)当n为任意正整数时,()na.(2)当n为奇数时,()a;当n为偶数时,()
5、a
6、=.②注意整
7、体思想、完全平方公式等的运用.③含参数化简,若开偶次方根,要注意分类讨论.知识点二分数指数幂1.分数指数幂:(1)正数的正分数指数幂的意义:.(2)正数的负分数指数幂的意义:(3)规定0的正分数指数幂为,0的负分数指数幂.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法.0没有意义由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:))2.有理数指数幂运算性质51.4151.41451.4142
8、51.414351.41551.4251.551.4结论:一般来说,无理数指数幂ap(a>0,p是一个无理数)是一个确定的实数,有理数指数幂的运算性质同样适用于无理数指数幂.题后反思方法总结:1.当所求根式含有重根号时,要搞清被开方数,由里向外用分数指数幂写出,然后再利用性质运算.2.计算结果形式:不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式表示,如果有特殊要求,可根据要求给出结果,但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.3.运算策略:化负指数为正指数、化根
9、式为分数指数幂、化小数为分数运算,同时还要注意运算顺序.
此文档下载收益归作者所有