欢迎来到天天文库
浏览记录
ID:51092767
大小:30.50 KB
页数:3页
时间:2020-03-18
《北师大版 数学八年级上册练习:1_为什么要证明_练习1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《第七章1 为什么要证明》讲解与例题1.推理证明的必要性给出两条线段a,b,判断它们是否相等,我们就需要去测量,因为有误差,所以测量的结果可能相等,也可能不相等,这说明测量所得出的结论也不一定正确.实验、观察、操作是人们认识事物的重要手段,但仅凭实验、观察、操作得到的结论有时是不全面的,甚至是错误的,所以正确地认识事物,不能单凭直觉,必须一步一步、有根有据地进行推理.谈重点证明的必要性(1)直觉有时会产生错误,不是永远可信的;(2)图形的性质并不都是通过测量得出的;(3)对少数具体例子的观察、测量或计算得出的结论,并不能保证一般情况下都成立;(4)只有通过推理的方法研究问题,才能揭示问
2、题的本质.【例1】观察下图,左图中间的圆圈大还是右图中间的圆圈大?解析:仅凭观察得到的结论不一定正确.眼睛看到的并一定可靠,眼睛有时会产生一些错觉.本例中感觉左图中间的圆圈好像比右图中间的圆圈要小一些,实际上这两个圆圈是一样大的.答案:一样大点评:实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.2.检验数学结论常用的方法(1)检验数学结论常用的方法主要有:实验验证、举出反例、推理证明.实验验证是最基本的方法,它直接反映由具体到抽象、由特殊到一般的逻辑思维方法;举出反例常用于说明该数学结论不一定成立;推理证明是最可靠、最科学的方法,是我们要掌握的重点.实际上每
3、一个正确的结论都需要我们进行严格的推理证明才能得出.检验数学结论的具体过程:观察、度量、实验→猜想归纳→结论→推理正确结论.(2)应用检验数学结论常用的三种方法的应用:实验验证法常用于检验一些比较直观、简单的结论;举出反例法多用于验证某结论是不正确的;推理证明主要用来进行严格的推理论证,既可以验证某结论是正确的,也可以验证某结论是不正确的.【例2-1】我们知道:2×2=4,2+2=4.试问:对于任意数a与b,是否一定有结论a×b=a+b?分析:通过举反例,找出使a×b=a+b不成立的a,b的值,就可以得出答案.解:3×2=6,而3+2=5,因为6≠5,所以不是任意数a与b,都有结论a×
4、b=a+b.【例2-2】如图,在▱ABCD中,DF⊥AC于点F,BE⊥AC于点E,试问DF与BE的位置关系和数量关系如何?你能肯定吗?请说明理由.分析:由图可知位置关系应为平行,而数量关系则为相等,用推理的方式说明理由即可.解:DF∥BE,DF=BE.理由:由DF⊥AC,BE⊥AC,可知∠DFC=∠BEA=90°,故DF∥BE.由AB∥CD,得∠DCF=∠BAE.又AB=CD,∠CFD=∠AEB=90°,所以△DCF≌△BAE.所以DF=BE.点评:观察只是猜测其结论,只有推理才能说明其结论的正确性.3.推理的应用推理的应用在数学中很多,下面给出两种较常见的应用:(1)规律探究给出形式
5、上相同的一些代数式或几何图形,观察、猜想其中蕴含的规律,并验证或推理说明.这是规律归纳类题目的特点.解题思路:解决此类题目时,要用从特殊到一般的思想找到思路,而且必须善于猜想.代数规律题一般用式子表示其规律,对于几何规律题有时用式子表示,有时写出文字结论.(2)推理在日常生活中的应用生活中我们经常需要对有关结论的真伪作出判断,如购买货物、称重是否准确、获得的某种信息是否可靠等.我们可以根据自己的知识储备或借助外力,进行适当的推理,辨别真伪,从而作出判断.【例3-1】下列图案均由边长为单位长度的小正方形按一定的规律拼接而成.依此规律,第5个图案中小正方形的个数为__________.解析
6、:第1个图形中正方形的个数为1,第2个图形中正方形的特点是中间是3个,左右两边各一个,即为1+3+1个,第3个图形中正方形的特点是中间是5个,左右分别是1+3个,即为1+3+5+3+1.所以第5个图案中小正方形的个数为1+3+5+7+9+7+5+3+1=41.答案:41【例3-2】有红、黄、蓝三个箱子,一个苹果放入其中某个箱子内,并且:①红箱子盖上写着:“苹果在这个箱子里.”②黄箱子盖上写着:“苹果不在这个箱子里.”③蓝箱子盖上写着:“苹果不在红箱子里.”已知①②③中只有一句是真的,那么苹果在哪个箱子里?分析:注意①与③互相矛盾,两件矛盾的事,不能都是真的,又不能都是假的,必有一真,这
7、样问题就解决了.解:经分析得①③中有一句是真话,一句是假话,而已知真话只有一句,所以②必是假话,从而可知苹果在黄箱子里.点技巧巧用排除法判断数学结论正确与否,可选择“排除法”.
此文档下载收益归作者所有