资源描述:
《数列概念及表示方法.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、托莆教育学科教师辅导讲义年级:高二辅导科目:数学学员姓名:~学科教师:黄钦梅课题数列的概念和表示方法教学内容(一)定义①数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.辩析数列的概念:(1)“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢?----------数列的有序性(2)数列中的数可以重复吗?(3)数列与集合有什么区别?集合讲究:无序性、互异性、确定性,数列讲究:有序性、可重复性、确定性。②数列中每一个数叫数列的项,排在第一位的数称为这个数列的第1项(或
2、首项),排在第二位的数称为这个数列的第2项……排在第位的数称为这个数列的第项.③数列的一般形式可以写成,简记为.④数列的分类:(1)按项数分:有穷数列与无穷数列,(2)按项之间的大小关系:递增数列、递减数列、常数列与摆动数列.⑤数列中的数与它的序号的关系?序号可以看作自变量,数列中的数可以看作随着变动的量。把数列看作函数。即:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值。反过来,对于函数,如果……)有意义,可以得到一个数列:如果数列的第n项与项数之间的关系可以用一个公式来表示,那么这个
3、公式就叫做这个数列的通项公式。函数数列(特殊的函数)定义域R或R的子集或它的子集解析式图象点的集合一些离散的点的集合(一)典型例题:例1、写出下列数列的一个通项公式,使它的前4项分别是下列各数:(1)(2)2,0,2,0.练习:根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,……;(2),,,,,……;(3)0,1,0,1,0,1,……;(4)1,3,3,5,5,7,7,9,9,……;(5)2,-6,18,-54,162,…….例2.写出数列的一个通项公式,并判断它的增减性。思考:是不是所有的数列都存在
4、通项公式?根据数列的前几项写出的通项公式是唯一的吗?例3.根据下面数列的通项公式,写出前五项:(1)(2)例4.求数列中的最大项。例5.已知数列的通项公式为,求是这个数列的第几项?随堂练习1).以下四个数中,是数列中的一项的是()A.380B.39C.32D.182).设数列为则是该数列的()A.第9项B.第10项C.第11项D.第12项3).数列的一个通项公式为______________.观察以下数列,并写出其通项公式:思考:除了用通项公式外,还有什么办法可以确定这些数列的每一项?(二)定义:已知数列的第一项(或前几项),且任一
5、项与它的前一项(或前几项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式.练习:运用递推公式确定一个数列的通项:例1:已知数列的第一项是1,以后的各项由公式给出,写出这个数列的前五项.练习:已知数列的前n项和为:求数列的通项公式.例2.已知,求.解法一:观察法解法二:累加法例3:已知,求.解法一::观察法解法二:迭乘法(三)、课堂小结:1.递推公式的概念;2.递推公式与数列的通项公式的区别是:(1)通项公式反映的是项与项数之间的关系,而递推公式反映的是相临两项(或n项)之间的关系.(2)对于通项公式,只要将公式中的n
6、依次取即可得到相应的项,而递推公式则要已知首项(或前n项),才可依次求出其他项.3.用递推公式求通项公式的方法:观察法、累加法、迭乘法.