欢迎来到天天文库
浏览记录
ID:51057944
大小:154.00 KB
页数:5页
时间:2020-03-18
《2017年春 北师大版数学 八年级下册 练习 1.单元测试(一) 三角形的证明.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、单元测试(一) 三角形的证明(时间:120分钟 满分:150分)一、选择题(每小题3分,共30分)1.如图,若∠B=30°,∠C=90°,AC=20m,则AB=(D)A.25mB.30mC.20mD.40m2.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是(A)A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是(C)A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是(C)
2、A.2,3,4B.4,5,6C.1,,D.2,,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是(A)A.HLB.ASAC.AASD.SAS6.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为(A)A.60°B.90°C.120°D.150°7.如图所示,在△ABC中,AC=DC=DB,∠A=40°,则∠B等于(D)A.50°B.40°C.25°D.20°8.如图所示,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为(C)A.1.5B.3C.6D.99.如图,在△ABC中,AB=AC,D为
3、BC中点,∠BAD=35°,则∠CAD的度数为(A)A.35°B.45°C.55°D.60°10.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个三角形中(D)A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如图,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是(B)A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°[来源:gkstk.Com]C.AC=A′C′=5,BC=B′C′=3D
4、.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是(A)A.1B.2C.3D.413.(黄冈中考)如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为(C)A.6B.6C.9D.314.(广州中考)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=
5、60°时,如图2,AC=(A)[来源:学优高考网gkstk]A.B.2C.D.215.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC∶S△ABC=1∶3.正确的个数(D)A.1B.2C.3D.4二、填空题(本大题共5小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是68_°.17.如图,在Rt△ABC
6、中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为4.[来源:gkstk.Com]18.如图,某失联客机从A地起飞,飞行1000km到达B地,再折返飞行1000km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为1_000km.19.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.20.如图所示,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是AD⊥E
7、F.三、解答题(本大题共7小题,共80分)21.(8分)如图,在△ABC中,AB=AC,AD⊥BC,点P是AD上的一点,且PE⊥AB,PF⊥AC,垂足分别为点E、F,求证:PE=PF.证明:在△ABC中,∵AB=AC,AD⊥BC,∴AD是∠BAC的平分线.又∵PE⊥AB,PF⊥AC,∴PE=PF.22.(8分)(无锡中考)如图,已知在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.求证:MD=ME.证明:∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△B
此文档下载收益归作者所有