高二必修5+选修1-1综合训练六.doc

高二必修5+选修1-1综合训练六.doc

ID:50989246

大小:645.50 KB

页数:6页

时间:2020-03-08

高二必修5+选修1-1综合训练六.doc_第1页
高二必修5+选修1-1综合训练六.doc_第2页
高二必修5+选修1-1综合训练六.doc_第3页
高二必修5+选修1-1综合训练六.doc_第4页
高二必修5+选修1-1综合训练六.doc_第5页
资源描述:

《高二必修5+选修1-1综合训练六.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、期末热身(德州市高二期末统考)1.已知抛物线x2=y,则它的准线方程为A.B.C.D.2.命题“存在x∈Z,使x2+2x+m≤0”的否定是A.存在x∈Z,使x2+2x+m>0B.不存在x∈Z,使x2+2x+m>0C.对任意x∈Z,使x2+2x+m≤0D.对任意x∈Z,使x2+2x+m>03在等比数列()中,若,,则该数列的前10项和为A.B.C.D.4、若,则下列不等式中一定成立的是A、B、C、D、5.曲线y=4x-x3在点(-1,-3)处的切线方程是A.y=7x+4B.y=7x+2C.y=x-4D.y=x-26、设椭圆的两焦点为F1、F

2、2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率为A、B、C、D、7、已知条件p:

3、x+1

4、>2,条件q:,则是的()A、充分必要条件B、充分非必要条件C、必要非充分条件D、既非充分又非必要条件8.双曲线的两个焦点,是双曲线上的一点,满足,则的面积为A.B.C.D.9、一动圆的圆心在抛物线上,且动圆恒与直线相切,则此动圆必经过的定点坐标为A.B.C.D.10.已知函数既存在极大值,又存在极小值,则实数m的取值范围是A、(-1,2)B、()C、(-3,6)D、11、抛物线上离点A(0,a)最近的点恰好是

5、顶点的充要条件是A、B、C、D、12.若函数在上可导且满足不等式恒成立,且常数满足,则下列不等式一定成立的是A.B.C.D.13、若14双曲线上一点P到左焦点F1的距离为12,则点P到右焦点F2的距离为15.已知正数组成等差数列{an}的前20项和为100,那么a7·a14的最大值为16、如图为的导数的图象,则正确的判断是①在(-3,1)上是增函数;②是的极小值点;③在(2,4)上是减函数,在(-1,2)上是增函数;④是的极小值点。17.设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2bsinA(1)求B的大小;(2)若a

6、=3,c=5,求b.18、已知等差数列{an}的前n项和为Sn,令,且,。求:①数列{bn}的通项公式;②求。19、设p:实数x满足,其中,命题实数满足.(Ⅰ)若且为真,求实数的取值范围;(Ⅱ)若是的必要不充分要条件,求实数a的取值范围.20、已知抛物线的顶点在原点,焦点在x轴的正半轴,且过点(2,4)。(1)求抛物线的标准方程;(2)已知直线交抛物线于A、B两点,且AB的中点的横坐标为2,求弦AB的长。21.已知函数,且f(x)在x=1处取得极值。(1)求b的值;(2)若当x∈[-1,2]时,f(x)

7、如图,在直角梯形中,,,,,,点在线段的延长线上.若曲线段(含两端点)为某曲线上的一部分,且曲线上任一点到两点的距离之和都相等.(1)建立恰当的直角坐标系,求曲线的方程;(2)根据曲线的方程写出曲线段(含两端点)的方程;(3)若点为曲线段(含两端点)上的任一点,试求的最小值,并求出取得最小值时点的坐标.ABCDE     期末热身(德州市高二期末统考)参考答案1-5.DDBCD6-10.DBADB11-12.CB13.(2,4)14.2515.2416.②③17.解:(1)由,根据正弦定理得,……2分所以,…………4分由为锐角三角形得.…

8、……6分(2)根据余弦定理,得.…………10分所以,…………12分18、解(1)设的首项公差为d,则∴①………4分又②由①②得………6分∴∴………8分(2)…10分∴…12分19、解:由得,又,所以,当时,1<,即为真时实数的取值范围是1<.…………2分由,得,即为真时实数的取值范围是.……4分若为真,则真且真,所以实数的取值范围是.…………6分(Ⅱ)是的必要不充分要条件,即,且,……………8分设A=,B=,则,又A==,B==,……………10分则,且所以实数的取值范围是.……12分20、解:(1)设抛物线方程为y2=2px(p>0)由已

9、知得:16=2p2,则2p=8故抛物线方程为y2=8x………………………4分22.解(1)如图,以所在的直线为轴,MABEDC其垂直平分线为轴,建立所示的直角坐标系,则,,.……………2分设动点为曲线上的任一点,则,即整理得,为所求曲线的方程 (另解:由椭圆的定义及可知曲线是以为焦点的椭圆,其中.于是得到曲线的方程为.)…6分(2)由题意知,而则所求曲线段的方程为……8分(3)由椭圆的定义及点为曲线段(含两端点)上的任一点可知,即,……………10分则,当且仅当点位于线段的交点处时等号成立,……………12分由知此时点的横坐标为2,则其纵坐标

10、为3,即当点的坐标为时有最小值.……………14分

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。