资源描述:
《圆复习专题课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第24章圆知识体系复习学习目标:1、系统熟悉圆的有关概念。2、巩固有关圆的一些性质和定理。3、进一步掌握应用圆的有关知识解决某些数学问题。本章知识结构图圆的基本性质圆圆的对称性弧、弦圆心角之间的关系同弧上的圆周角与圆心角的关系与圆有关的位置关系正多边形和圆有关圆的计算点和圆的位置关系切线直线和圆的位置关系三角形的外接圆三角形内切圆等分圆圆和圆的位置关系弧长扇形的面积圆锥的侧面积和全面积学习要求:1、圆是如何定义的?2、同圆或等圆中的弧、弦、圆心角有什么关系?垂直于弦的直径有什么性质?一条弧所对的圆周角和它所对的圆心角有什么关系?3、点和圆有怎样的位置关系?直线和圆呢?圆和
2、圆呢?怎样判断这些位置关系呢?4、圆的切线有什么性质?如何判断一条直线是圆的切线?5、正多边形和圆有什么关系?6、如何计算弧长、扇形面积、圆锥的侧面积和全面积。一.圆的基本概念:1.圆的定义:到定点的距离等于定长的点的集合叫做圆.2.有关概念:(1)弦、直径(圆中最长的弦)(2)弧、优弧、劣弧、等弧(3)弦心距.O二.圆的基本性质1.圆的对称性:(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数条对称轴.(2)圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合,即圆具有旋转不变性..2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧..
3、ADBPC∵CD是圆O的直径,CD⊥AB∴AP=BP,︵AC︵BC=︵AD︵BD=3.同圆或等圆中圆心角、弧、弦之间的关系:(1)在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等.(2)在圆中,如果弧相等,那么它所对的圆心角相等,所对的弦相等.(3)在一个圆中,如果弦相等,那么它所对的弧相等,所对的圆心角相等.ABDCO∵∠COD=∠AOB︵AB︵CD=∴∴AB=CD1、如图,已知⊙O的半径OA长为5,弦AB的长8,OC⊥AB于C,则OC的长为_______.OABC3AC=BC弦心距半径半弦长反思:在⊙O中,若⊙O的半径r、圆心到弦的距离d、弦长a中,任
4、意知道两个量,可根据定理求出第三个量:CDBAO2:如图,圆O的弦AB=8㎝,DC=2㎝,直径CE⊥AB于D,求半径OC的长。垂径直径MN⊥AB,垂足为E,交弦CD于点F.3、如图,P为⊙O的弦BA延长线上一点,PA=AB=2,PO=5,求⊙O的半径。辅助线关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题。MAPBOA4.圆周角:定义:顶点在圆周上,两边和圆相交的角,叫做圆周角.性质:(1)在同一个圆中,同弧所对的圆周角等于它所对的圆心角的一半.∠BAC=∠BOC12在同圆或等圆中
5、,同弧或等弧所对的所有的圆周角相等.相等的圆周角所对的弧相等.圆周角的性质(2)∵∠ADB与∠AEB、∠ACB是同弧所对的圆周角∴∠ADB=∠AEB=∠ACB性质3:半圆或直径所对的圆周角都相等,都等于900(直角).性质4:900的圆周角所对的弦是圆的直径.∵AB是⊙O的直径∴∠ACB=900圆周角的性质:15•ABCOD3.6作圆的直径与找90度的圆周角也是圆里常用的辅助线2.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O与点F.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说
6、明理由.(05宜昌)1.在⊙O中,弦AB所对的圆心角∠AOB=100°,则弦AB所对的圆周角为____________.(05年上海)500或13003.如图在比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经助攻冲到B点,此时甲是直接射门好,还是将球传给乙,让乙射门好?为什么?PQ·AB(2)点在圆上(3)点在圆外(1)点在圆内...1.点和圆的位置关系.ACB如果规定点与圆心的距离为d,圆的半径为r,则d与r的大小关系为:点与圆的位置关系d与r的关系点在圆内点在圆上点在圆外d<rd=rd>r三.与圆有关的位置关系:7.在Rt△ABC中,∠C=90°,BC
7、=3cm,AC=4cm,D为AB的中点,E为AC的中点,以B为圆心,BC为半径作⊙B,问:(1)A、C、D、E与⊙B的位置关系如何?(2)AB、AC与⊙B的位置关系如何?EDCAB·2.如图,OA是⊙O的半径,已知AB=OA,试探索当∠OAB的大小如何变化时点B在圆内?点B在圆上?点B在圆外?•ABO2.直线和圆的位置关系:.O.O.Olll(1)相离:(2)相切:(3)相交:一条直线与一个圆没有公共点,叫做直线与这个圆相离.一条直线与一个圆只有一个公共点,叫做直线与这个圆相切.一条直线与一个圆有两个公共点,叫做直线与这个圆相