高三数学总复习讲义-数列.doc

高三数学总复习讲义-数列.doc

ID:50971919

大小:1.43 MB

页数:13页

时间:2020-03-16

高三数学总复习讲义-数列.doc_第1页
高三数学总复习讲义-数列.doc_第2页
高三数学总复习讲义-数列.doc_第3页
高三数学总复习讲义-数列.doc_第4页
高三数学总复习讲义-数列.doc_第5页
资源描述:

《高三数学总复习讲义-数列.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高三数学总复习讲义——数列概念知的识清单1.数列概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。记作,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为的项叫第项(也叫通项)记作;数列的一般形式:,,,……,,……,简记作。(2)通项公式的定义:如果数列的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。例如,数列①的通项公式是=(7,),数列②的通项公式是=()。说明:①表示数列,表示数列中的第项,=表示数列的通项公式;②同一个数

2、列的通项公式的形式不一定唯一。例如,==;③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:序号:123456项:456789上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集(或它的有限子集)的函数当自变量从1开始依次取值时对应的一系列函数值……,,…….通常用来代替,其图象是一群孤立点。(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数

3、列、递减数列)、常数列和摆动数列。(5)递推公式定义:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。(6)数列{}的前项和与通项的关系:课前预习1.根据数列前4项,写出它的通项公式:(1)1,3,5,7……;(2),,,;(3),,,。2.数列中,已知,(1)写出,,;(2)是否是数列中的项?若是,是第几项?3.如图,一粒子在区域上运动,在第一秒内它从原点运动到点,接着按图中箭头所示方向在x轴、y轴及其平行方向上运动,且每秒移动一个

4、单位长度。(1)设粒子从原点到达点时,所经过的时间分别为,试写出的通相公式;(2)求粒子从原点运动到点时所需的时间;(3)粒子从原点开始运动,求经过2004秒后,它所处的坐标。4.(1)已知数列适合:,,写出前五项并写出其通项公式;(2)用上面的数列,通过等式构造新数列,写出,并写出的前5项。5.设平面内有条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用表示这条直线交点的个数,则=____________;当时,(用表示)。6.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观

5、察表中数据的特点,用适当的数填入表中空白(_____)内。高三数学总复习讲义——等差数列知识清单1、等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。用递推公式表示为或。2、等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。3、等差中项的概念:定义:如果,,成等差数列,那么叫做与的等差中项。其中,,成等差数列。4、等差数列的前和的求和公式:。5、等差数列的性质:(1)

6、在等差数列中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列中,相隔等距离的项组成的数列是,如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则;说明:设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①奇偶;②;(Ⅱ)若项数为奇数,设共有项,则①偶奇;②。6、数列最值(1),时,有最大值;,时,有最小值;(2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。课前预习1.设Sn是数列{an}的前n项和,且Sn

7、=n2,则{an}是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列2.设是公差为正数的等差数列,若,,则()A.B.C.D.3.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项B.12项C.11项D.10项4.设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1B.2C.4D.65.设Sn是等差数列{an}的前n项和,若=,则=A.B.C.D.6.设{an}为

8、等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{}的前n项和,求Tn。7.已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100.(Ⅰ)求数列{bn}的通项bn;(Ⅱ)设数列{an}的通项an=lg(1+),记Sn是数列{an}的前n项和,试比较Sn与lgbn+1的大小,并证明你的结论

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。