数学建模小实例.doc

数学建模小实例.doc

ID:50960146

大小:194.50 KB

页数:9页

时间:2020-03-16

数学建模小实例.doc_第1页
数学建模小实例.doc_第2页
数学建模小实例.doc_第3页
数学建模小实例.doc_第4页
数学建模小实例.doc_第5页
资源描述:

《数学建模小实例.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1、司乘人员配备问题某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下:班次时间最少需要人数16:00—10:0060210:00—14:0070314:00—18:0060418:00—22:0050522:00—2:002062:00—6:0030设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员?解:设为第班应报到的人员,建立线性模型如下:LINGO程序如下:MODEL:min=x1+x2+x3+x4+x5+x6;x1+x6>=60;x1+x2>=70;x2+x3>=60;x3+x4>=50;x4

2、+x5>=20;x5+x6>=30;END得到的解为:x1=60,x2=10,x3=50,x4=0,x5=30,x6=0;配备的司机和乘务人员最少为150人。2、铺瓷砖问题要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问是这人的功夫不到家还是这个问题根本无解呢?解答:01010010101010101010101010101010101010103、棋子颜色问题在任意拿出黑白两种颜色的棋子共n个,随机排成一个圆圈。然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两

3、颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢?分析与求解:由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)=-1,这代表两颗不同色的棋子中间放一颗白色棋子。设棋子数为,为初始状态。当n=3时步数状态(舍掉偶次项)01234说明当n=3时,经过3步进入初始状态。当n=4时步数状态(舍掉偶次项)01

4、234说明当n=4时,经过4步全变为黑色棋子。既不循环也不全为黑子结论:当棋子数为时,至多经过次操作,就可以全部变为黑子,当棋子数不为时则一般不能全变为黑子。Matlab程序:进行实验%棋子颜色问题演示%1---黑子,-1-----白子n=4;%定义棋子数times=6;%定义迭代次数x0=zeros(1,n);x1=zeros(1,n);%定义数组fori=1:nk=rand(1,1);if(k>0.5)x0(i)=1;elsex0(i)=-1;endend;%赋初值x0fori=1:timesifork=1:n-1x1(k)=x0(k)*x0(k+1);e

5、ndx1(n)=x0(n)*x0(1);x1%显示各次结果x0=x1;end程序语句解释:1.zeros(m,n),产生一个m×n的0矩阵,通常用于定义一个指定大小的矩阵.zeros(1,n)则产生一个全部为0的行向量。2.rand(m,n),产生一个m×n的随机矩阵,每个元素都服从[0,1]上的均匀分布.rand(1,1)则产生一个服从[0,1]上的均匀分布的数字。4.选修课策略问题某学校规定,运筹学专业的学生毕业时必须至少学习过两门数学课、三门运筹学课和两门计算机课。这些课程的编号、名称、学分、所属类别和先修课要求如表1所示。那么,毕业时学生最少可以学习这

6、些课程中哪些课程。如果某个学生既希望选修课程的数量少,又希望所获得的学分多,他可以选修哪些课程?表1课程情况课程编号课程名称学分所属类别先修课要求1微积分5数学2线性代数4数学3最优化方法4数学;运筹学微积分;线性代数4数据结构3数学;计算机计算机编程5应用统计4数学;运筹学微积分;线性代数6计算机模拟3计算机;运筹学计算机编程7计算机编程2计算机8预测理论2运筹学应用统计9数学实验3运筹学;计算机微积分;线性代数模型的建立1不考虑学分情形:记i=1,2,…,9表示9门课程的编号。设表示第i门课程选修,表示第i门课程不选。问题的目标为选修的课程总数最少,即约束

7、条件包括两个方面:第一方面是课程数量的约束:每个人最少要学习2门数学课,则每个人最少要学习3门运筹学课,则每个人最少要学习2门计算机课,则有:第二方面是先修课程的关系约束:如“数据结构”的先修课程是“计算机编程”,这意味着如果,必须,这个条件可以表示为(注意当时对没有限制)。这样,所有课程的先修课要求可表为如下的约束“最优化方法”的先修课是“微积分”和“线性代数”,有:“数据结构”的先修课程是“计算机编程”,有:“应用统计”的先修课是“微积分”和“线性代数”,有:“计算机模拟”的先修课程是“计算机编程”,有:“预测理论”的先修课程是“应用统计”,有:“数学实验

8、”是“微积分”和“线性代数”,有:这样

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。