欢迎来到天天文库
浏览记录
ID:50660111
大小:641.50 KB
页数:6页
时间:2020-03-07
《高考数学必修知识讲解空间直角坐标系提高.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、空间直角坐标系【学习目标】通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式.【要点梳理】要点一、空间直角坐标系1.空间直角坐标系从空间某一定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz,点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy平面、yOz平面、zOx平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴
2、的正方向,则称这个坐标系为右手直角坐标系.3.空间点的坐标空间一点A的坐标可以用有序数组(x,y,z)来表示,有序数组(x,y,z)叫做点A的坐标,记作A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.要点二、空间直角坐标系中点的坐标1.空间直角坐标系中点的坐标的求法通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标.特殊点的坐标:原点;轴上的点的坐标分别为;坐标平面上的点的坐标分别为.2.空间直角坐标系中对称点的坐标在空间直角坐标系中,点,则有点关于原点的对称点是;点关于横轴(x轴)的对称
3、点是;点关于纵轴(y轴)的对称点是;点关于竖轴(z轴)的对称点是;点关于坐标平面的对称点是;点关于坐标平面的对称点是;点关于坐标平面的对称点是.要点三、空间两点间距离公式1.空间两点间距离公式空间中有两点,则此两点间的距离.特别地,点与原点间的距离公式为.2.空间线段中点坐标空间中有两点,则线段AB的中点C的坐标为.【典型例题】类型一:空间坐标系例1.画一个正方体ABCD—A1B1C1D1,以A为坐标原点,以棱AB、AD、AA1所在直线为坐标轴,取正方体的棱长为单位长度,建立空间直角坐标系。(1)求各顶点的坐标;(2)求棱C1C中点的坐标;(3)求平面AA1B1B对角线交点的坐
4、标。【答案】(1)略(2)(3)【解析】如图所示,由棱长为1,可得(1)各顶点坐标分别是A(0,0,0)、B(1,0,0)、C(1,1,0)、D(0,1,0)、A1(0,0,1)、B1(1,0,1)、C1(1,1,1)、D1(0,1,1);(2)棱CC1中点为;(3)平面AA1B1B对角线交点为。【总结升华】(1)空间的中点坐标公式:设A(x1,y1,z1)、B(x2,y2,z2),则AB的中点为。(2)熟记坐标轴上点的坐标和坐标平面上点的坐标表示的特征。举一反三:【变式1】在如图所示的空间直角坐标系中,OABC—D1A1B1C1是单位正方体,N是BB1的中点,求这个单位正方体
5、各顶点和点N的坐标.【答案】O(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),D1(0,0,1),A1(1,0,1),B1(1,1,1),C1(0,1,1),N(1,1,)。例2.在平面直角坐标系中,点P(x,y)的几种特殊的对称点的坐标如下:(1)关于原点的对称点是P'(-x,-y);(2)关于轴的对称点是P"(x,-y);(3)关于轴的对称点是P(-x,y).那么,在空间直角坐标系内,点P(x,y,z)的几种特殊的对称点坐标为:①关于原点的对称点是P1________;②关于横轴(x轴)的对称点是P2________;③关于纵轴(y轴)的对称点是P3_
6、_______;④关于竖轴(z轴)的对称点是P4________;⑤关于xOy坐标平面的对称点是P5________;⑥关于yOz坐标平面的对称点是P6________;⑦关于zOx坐标平面的对称点是P7________.【答案】①(-x,-y,-z)②(x,-y,-z)③(-x,y,-z)④(-x,-y,z)⑤(x,y,-z)⑥(-x,y,z)⑦(x,-y,z)【解析】类比平面直角坐标系,在空间直角坐标系有如下结论:①P1(-x,-y,-z);②P2(x,-y,-z);③P3(-x,y,-z);④P4(-x,-y,z);⑤P5(x,y,-z);⑥P6(-x,y,z);⑦P7(
7、x,-y,z).【总结升华】上述结论的证明,可类比平面直角坐标系的方法加以证明:如P点关于原点的对称点P1,则有PP1的中点为原点。由中点坐标公式即可求出P1点坐标.上述结论的记忆方法:“关于谁对称谁不变,其余的相反”,如关于轴对称的点,横坐标不变,纵、竖坐标变为原来的相反数;关于坐标平面对称的点,横、纵坐标不变,竖坐标相反.举一反三:【变式1】(1)在空间直角坐标系中,点P(-2,1,4)关于x轴对称的点的坐标是().A.(-2,1,-4)B.(-2,-1,-4)C.(2,-1,4)D.(
此文档下载收益归作者所有