欢迎来到天天文库
浏览记录
ID:50614347
大小:58.79 KB
页数:5页
时间:2020-03-12
《2021版高考数学一轮复习第六章数列第2讲等差数列及其前n项和高效演练分层突破文新人教A版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2讲 等差数列及其前n项和[基础题组练]1.(2020·长春市质量监测(二))等差数列{an}中,Sn是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为( )A.2 B.3C.4D.6解析:选C.由题意,知解得故选C.2.(2020·重庆市七校联合考试)在等差数列{an}中,若a3+a5+a7+a9+a11=55,S3=3,则a5等于( )A.5B.6C.7D.9解析:选C.设数列{an}的公差为d,因为数列{an}是等差数列,所以a3+a5+a7+a9+a11=5a7=55,所以a7=11,又S3=3,所以解得所以a5=7.故选C.
2、3.已知数列{an}满足a1=15,且3an+1=3an-2,若ak·ak+1<0,则正整数k=( )A.21B.22C.23D.24解析:选C.3an+1=3an-2⇒an+1=an-⇒{an}是等差数列,则an=-n.因为ak·ak+1<0,所以<0,所以3、数列,其中的“三升九”指3.9升,则九节竹的中间一节的盛米容积为( )A.0.9升B.1升C.1.1升D.2.1升解析:选B.设竹筒从下到上的盛米量分别为a1,a2,…,a9,依题意得故即a2+5d+a2+6d=2a2+11d=2.6+11d=1.5,解得d=-0.1,故a5=a2+3d=1.3-0.3=1升.故选B.5.已知数列{an}的前n项和为Sn,a1=1,a2=2,且对于任意n>1,n∈N*,满足Sn+1+Sn-1=2(Sn+1),则( )A.a9=17B.a10=18C.S9=81D.S10=90解析:选B.因为对于任意n>1,n∈N*,满足Sn+1+Sn4、-1=2(Sn+1),所以Sn+1-Sn=Sn-Sn-1+2,所以an+1-an=2.所以数列{an}在n≥2时是等差数列,公差为2.又a1=1,a2=2,则a9=2+7×2=16,a10=2+8×2=18,S9=1+8×2+×2=73,S10=1+9×2+×2=91.故选B.6.(2019·高考全国卷Ⅲ)记Sn为等差数列{an}的前n项和.若a3=5,a7=13,则S10=.解析:通解:设等差数列{an}的公差为d,则由题意,得解得所以S10=10×1+×2=100.优解:由题意,得公差d=(a7-a3)=2,所以a4=a3+d=7,所以S10==5(a4+a7)=105、0.答案:1007.(2020·武昌区调研考试)设{an}是公差不为零的等差数列,Sn为其前n项和,已知S1,S2,S4成等比数列,且a3=5,则数列{an}的通项公式为.解析:设数列{an}的公差为d(d≠0),因为{an}是等差数列,S1,S2,S4成等比数列,所以(a1+a2)2=a1(a1+a2+a3+a4),因为a3=5,所以(5-2d+5-d)2=(5-2d)(5-2d+15),解得d=2或d=0(舍去),所以5=a1+(3-1)×2,即a1=1,所以an=2n-1.答案:an=2n-18.(2020·福建龙岩期末改编)已知数列{an}的前n项和为Sn,a1=6、1,an+an+1=2n+1(n∈N*),则a20的值为,S21的值为.解析:将n=1代入an+an+1=2n+1中得a2=3-1=2.由an+an+1=2n+1①,得an+1+an+2=2n+3②.②-①,得an+2-an=2,所以数列{an}的奇数项、偶数项都是以2为公差的等差数列,则a21=1+10×2=21,a20=2+9×2=20,所以S21=(a1+a3+a5+…+a21)+(a2+a4+a6+…+a20)=+=231.答案:20 2319.(2019·高考全国卷Ⅰ)记Sn为等差数列{an}的前n项和.已知S9=-a5.(1)若a3=4,求{an}的通项公式;7、(2)若a1>0,求使得Sn≥an的n的取值范围.解:(1)设{an}的公差为d,由S9=-a5得a1+4d=0,由a3=4得a1+2d=4,于是a1=8,d=-2.因此{an}的通项公式为an=10-2n.(2)由(1)得a1=-4d,故an=(n-5)d,Sn=.由a1>0知d<0,故Sn≥an等价于n2-11n+10≤0,解得1≤n≤10.所以n的取值范围是{n8、1≤n≤10,n∈N}.10.已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.(1)求a及k的值;(2)已知数列{bn}满足bn=,证明
3、数列,其中的“三升九”指3.9升,则九节竹的中间一节的盛米容积为( )A.0.9升B.1升C.1.1升D.2.1升解析:选B.设竹筒从下到上的盛米量分别为a1,a2,…,a9,依题意得故即a2+5d+a2+6d=2a2+11d=2.6+11d=1.5,解得d=-0.1,故a5=a2+3d=1.3-0.3=1升.故选B.5.已知数列{an}的前n项和为Sn,a1=1,a2=2,且对于任意n>1,n∈N*,满足Sn+1+Sn-1=2(Sn+1),则( )A.a9=17B.a10=18C.S9=81D.S10=90解析:选B.因为对于任意n>1,n∈N*,满足Sn+1+Sn
4、-1=2(Sn+1),所以Sn+1-Sn=Sn-Sn-1+2,所以an+1-an=2.所以数列{an}在n≥2时是等差数列,公差为2.又a1=1,a2=2,则a9=2+7×2=16,a10=2+8×2=18,S9=1+8×2+×2=73,S10=1+9×2+×2=91.故选B.6.(2019·高考全国卷Ⅲ)记Sn为等差数列{an}的前n项和.若a3=5,a7=13,则S10=.解析:通解:设等差数列{an}的公差为d,则由题意,得解得所以S10=10×1+×2=100.优解:由题意,得公差d=(a7-a3)=2,所以a4=a3+d=7,所以S10==5(a4+a7)=10
5、0.答案:1007.(2020·武昌区调研考试)设{an}是公差不为零的等差数列,Sn为其前n项和,已知S1,S2,S4成等比数列,且a3=5,则数列{an}的通项公式为.解析:设数列{an}的公差为d(d≠0),因为{an}是等差数列,S1,S2,S4成等比数列,所以(a1+a2)2=a1(a1+a2+a3+a4),因为a3=5,所以(5-2d+5-d)2=(5-2d)(5-2d+15),解得d=2或d=0(舍去),所以5=a1+(3-1)×2,即a1=1,所以an=2n-1.答案:an=2n-18.(2020·福建龙岩期末改编)已知数列{an}的前n项和为Sn,a1=
6、1,an+an+1=2n+1(n∈N*),则a20的值为,S21的值为.解析:将n=1代入an+an+1=2n+1中得a2=3-1=2.由an+an+1=2n+1①,得an+1+an+2=2n+3②.②-①,得an+2-an=2,所以数列{an}的奇数项、偶数项都是以2为公差的等差数列,则a21=1+10×2=21,a20=2+9×2=20,所以S21=(a1+a3+a5+…+a21)+(a2+a4+a6+…+a20)=+=231.答案:20 2319.(2019·高考全国卷Ⅰ)记Sn为等差数列{an}的前n项和.已知S9=-a5.(1)若a3=4,求{an}的通项公式;
7、(2)若a1>0,求使得Sn≥an的n的取值范围.解:(1)设{an}的公差为d,由S9=-a5得a1+4d=0,由a3=4得a1+2d=4,于是a1=8,d=-2.因此{an}的通项公式为an=10-2n.(2)由(1)得a1=-4d,故an=(n-5)d,Sn=.由a1>0知d<0,故Sn≥an等价于n2-11n+10≤0,解得1≤n≤10.所以n的取值范围是{n
8、1≤n≤10,n∈N}.10.已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.(1)求a及k的值;(2)已知数列{bn}满足bn=,证明
此文档下载收益归作者所有