资源描述:
《正余弦定理的应用举例很好.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、应用举例1.正弦定理和余弦定理的基本公式是什么?复习巩固2.正弦定理和余弦定理分别适合解哪些类型的三角形?正弦定理:一边两角或两边与对角;余弦定理:两边与一角或三边.复习巩固题型分类深度剖析题型一 测量距离问题问题1.A、B两点在河的两岸(B点不可到达),要测量这两点之间的距离。测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=60o,∠ACB=75o,求A、B两点间的距离(精确到0.1m).分析:所求的边AB的对角是已知的,又知三角形的一边AC,根据三角形内角和定理可计
2、算出边AC的对角,根据正弦定理,可以计算出边AB.解:根据正弦定理,得答:A、B两点间的距离为75.1米。例2、A、B两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法。分析:用例1的方法,可以计算出河的这一岸的一点C到对岸两点的距离,再测出∠BCA的大小,借助于余弦定理可以计算出A、B两点间的距离。解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在∆ADC和∆BDC中,应用正弦定理得计算出AC和BC后,再
3、在ABC中,应用余弦定理计算出AB两点间的距离ABCD30°45°30°60°分析:在△ABD中求AB在△ABC中求AB练习选定两个可到达点C、D;→测量C、D间的距离及∠ACB、∠ACD、∠BDC、∠ADB的大小;→利用正弦定理求AC和BC;→利用余弦定理求AB.测量两个不可到达点之间的距离方案:形成规律在测量上,根据测量需要适当确定的线段叫做基线,如例1中的AC,例2中的CD.基线的选取不唯一,一般基线越长,测量的精确度越高.形成结论解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未
4、知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).题型二 测量高度问题2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北6
5、0°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).例3、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高。由解直角三角形的知识,只要能测出一点C到建筑物的顶部A的距离CA,并测出由点C观察A的仰角,就可以计算出建筑物的高。所以应该设法借助解三角形的知识测出CA的长。解:选择一条水平基线HG,使H,G,B三点在同一条直线上。由在H,G两点用测角仪器测得A的仰
6、角分别是α,β,CD=a,测角仪器的高是h.那么,在⊿ACD中,根据正弦定理可得例3、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法例4、在山顶铁塔上B处测得地面上一点A的俯角α=75°,在塔底C处测得A处的俯角β=45°。已知铁塔BC部分的高为30m,求出山高CD.分析:根据已知条件,应该设法计算出AB或AC的长解:在⊿ABC中,∠BCA=90°+β,∠ABC=90°-α,∠BAC=α-β,∠BAD=α.根据正弦定理,例5一辆汽车在一条水平的公路上向正西行驶
7、,到A处时测得公路北侧远处一山顶D在西偏北30°的方向上,行驶5km后到达B处,测得此山顶在西偏北75°的方向上,仰角30°,求此山的高度CD.分析:要测出高CD,只要测出高所在的直角三角形的另一条直角边或斜边的长。根据已知条件,可以计算出BC的长。例5一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北30°的方向上,行驶5km后到达B处,测得此山顶在西偏北75°的方向上,仰角30°,求此山的高度CD.解:在⊿ABC中,∠A=30°,∠C=75°-30°=45°.根据正弦
8、定理,CD=BC×tan∠DBC≈BC×tan30°≈2041(m)答:山的高度约为2041米。方程的思想返回