资源描述:
《双曲线的简单几何性质优质课ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.3.2双曲线简单的几何性质(一)1定义图象方程焦点a.b.c的关系
2、
3、MF1
4、-
5、MF2
6、
7、=2a(0<2a<
8、F1F2
9、)F(±c,0)F(0,±c)22、对称性一、研究双曲线的简单几何性质1、范围关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)课堂新授33、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点xyo-bb-aa如图,线段叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长(2)实轴与虚轴等长的双
10、曲线叫等轴双曲线(3)4M(x,y)4、渐近线N(x,y’)Q慢慢靠近xyoab(1)(2)利用渐近线可以较准确的画出双曲线的草图(3)动画演示55、离心率离心率。c>a>0e>1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:(2)e的范围:(3)e的含义:6(4)等轴双曲线的离心率e=?(5)7xyo-aab-b(1)范围:(2)对称性:关于x轴、y轴、原点都对称(3)顶点:(0,-a)、(0,a)(4)渐近线:(5)离心率:8小结或或关于坐标轴和原点都对称性质双曲线范围对称性顶点渐近线离心率图象9例1:求双曲线的实半轴长,虚半轴长,焦点坐标,离心率.渐近线
11、方程。解:把方程化为标准方程可得:实半轴长a=4虚半轴长b=3半焦距c=焦点坐标是(0,-5),(0,5)离心率:渐近线方程:14416922=-xy1342222=-xy53422=+45==ace例题讲解10例2:111、若双曲线的渐近线方程为则双曲线的离心率为。2、若双曲线的离心率为2,则两条渐近线的夹角为。课堂练习12例3:求下列双曲线的标准方程:例题讲解13法二:巧设方程,运用待定系数法.⑴设双曲线方程为,14法二:设双曲线方程为∴双曲线方程为∴,解之得k=4,151、“共渐近线”的双曲线的应用λ>0表示焦点在x轴上的双曲线;λ<0表示焦点在y轴上的双曲线。总结
12、:16172、求与椭圆有共同焦点,渐近线方程为的双曲线方程。解:椭圆的焦点在x轴上,且坐标为双曲线的渐近线方程为解出1812=+byax222(a>b>0)12222=-byax(a>0b>0)222=+ba(a>0b>0)c222=-ba(a>b>0)c椭圆双曲线方程abc关系图象椭圆与双曲线的比较yXF10F2MXY0F1F2p小结19关于x轴、y轴、原点对称图形方程范围对称性顶点离心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)关于x轴、y轴、原点对称渐近线..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(
13、c,0)F2(0,c)F1(0,-c)20212.求中心在原点,对称轴为坐标轴,经过点P(1,-3)且离心率为的双曲线标准方程.1.过点(1,2),且渐近线为的双曲线方程是________.222.3.2双曲线简单的几何性质(二)23关于x轴、y轴、原点对称图形方程范围对称性顶点离心率yxOA2B2A1B1..F1F2yB2A1A2B1xO..F2F1A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)F1(-c,0)F2(c,0)F1(-c,0)F2(c,0)关于x轴、y轴、原点对称A1(-a,0),A2(a,0)渐进线无24关于x轴、y轴、原点对称图形方程
14、范围对称性顶点离心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)关于x轴、y轴、原点对称渐进线..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)251、“共渐近线”的双曲线λ>0表示焦点在x轴上的双曲线;λ<0表示焦点在y轴上的双曲线。2、“共焦点”的双曲线(1)与椭圆有共同焦点的双曲线方程表示为(2)与双曲线有共同焦点的双曲线方程表示为26复习练习:2.求与椭圆有共同焦点,渐近线方程为的双曲线方程。3、求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程。27例1、双曲线
15、型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为25m,高55m.选择适当的坐标系,求出此双曲线的方程(精确到1m).A′A0xC′CB′By131225例题讲解28xyOlF引例:点M(x,y)与定点F(c,0)的距离和它到定直线的距离比是常数(c>a>0),求点M的轨迹.M解:设点M(x,y)到l的距离为d,则即化简得(c2-a2)x2-a2y2=a2(c2-a2)设c2-a2=b2,(a>0,b>0)故点M的轨迹为实轴、虚轴长分别为2a、2b的双曲线.b2x2