资源描述:
《数学中心对称ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数学九年级上第23章第2节《中心对称》1中心对称2图形的旋转?如果图形上的点P经过旋转变为P’,那么这两点叫做这个旋转的对应点在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形变换称为图形的旋转。这个定点称为旋转中心。转的角度称为旋转角。3(4)对应点到旋转中心的距离相等.旋转的基本性质(1)旋转不改变图形的大小和形状.(2)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度(3)任意一对对应点与旋转中心的连线所成的角度都是旋转角.4简单的旋转作图1AO点的旋转作法将A点绕O点沿顺时针方向旋转60˚.B5简单的旋转作图2AO线段的旋转作法将线段AB绕O点沿顺时针方向旋转
2、60˚.CBD6(1)把其中一个图案绕点O旋转180°,你有什么发现?重合重合观察(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你有什么发现?789ACBADE像这样把一个图形绕着某一点旋转180度,如果它能够和另一个图形重合,那么,我们就说这两个图关于这个点对称或中心对称,这个点就叫对称中心,这两个图形中的对应点,叫做关于中心的对称点.观察:C.A.E三点的位置关系怎样?线段AC.AE的大小关系呢?ADE10探究旋转三角板,画关于点O对称的两个三角形:画出的△ABC与△A′B′C′关于点O对称.分别连接对称点AA′、BB′、CC′。点O
3、在线段AA′上吗?如果在,在什么位置?△ABC与△A′B′C′有什么关系?(1)点O是线段AA的中点(2)△ABC≌△A′B′C′第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A′B′C′;第三步,移开三角板.11下图中△A′B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?探索:A’B’C’ABCO(1)OA=OA′、OB=OB′、OC=OC′(2)△ABC≌△A′B′C′12ABCC1A1B1O能够互相重合的点叫做对称点。如:A与A1,B与B1,C与C1。这个点叫做它的对称中心。定义:如果一个图形绕一个点旋转180
4、°后,能够和另一个图形互相重合,那么这两个图形关于这个点对称。也称这两个图形成中心对称。13归纳:(1)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.(2)关于中心对称的两个图形是全等形。14想一想中心对称与轴对称有什么区别?又有什么联系?轴对称中心对称有一条对称轴---直线有一个对称中心---点图形沿对称轴对折(翻折1800)后重合图形绕对称中心旋转1800后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分15轴
5、对称中心对称1有一条对称轴——直线有一个对称中心——点2图形沿轴对折(翻转180°)图形绕中心旋转180°3翻转后和另一个图形重合旋转后和另一个图形重合ABCC1A1B1O16AA′B′BO2、线段的中心对称线段的作法AOA′1、点的中心对称点的作法灵活运用,体会内涵以点O为对称中心,作出点A的对称点A′;以点O为对称中心,作出线段AB的对称线段点A′B′点A′即为所求的点17例1(2)如图23.2-5,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.解:A′C′B′△A′B′C′即为所求的三角形。18例1(3)已知四边形ABCD和点O,画四边形A′B′C′D′
6、,使它与已知四边形关于这一点对称。ABA’C’B’D’DOC四边形A1B1C1D1即为所求的图形。19画一个与已知四边形ABCD中心对称图形。(1)以顶点A为对称中心;(2)以BC边的中点为对称中心。提高练习DABCEFGMDABCO.N20A’B’C’OABC[例2]如图,已知等边三角形ABC和点O,画△A’B’C’,使△A’B’C’和△ABC关于点O成中心对称。21如图,已知△ABC与△A’B’C’中心对称,求出它们的对称中心O。ABCA’B’C’应用22解法一:根据观察,B、B’应是对应点,连结BB’,用刻度尺找出BB’的中点O,则点O即为所求(如图)ABCA’B’C’O
7、23O解法二:根据观察,B、B’及C、C’应是两组对应点,连结BB’、CC’,BB’、CC’相交于点O,则点O即为所求(如图)。ABCA’B’C’2425262728希望同学们认真体会!29