欢迎来到天天文库
浏览记录
ID:50567576
大小:1.53 MB
页数:16页
时间:2020-03-11
《2020届宁夏六盘山高中高三(上)期末数学试卷(理科)(B卷)(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020学年宁夏六盘山高中高三(上)期末数学试卷(理科)(B卷)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知全集U=R,集合A={x
2、<0},B={x
3、x≥1},则集合{x
4、x≤0}等于( )A.A∩BB.A∪BC.∁U(A∩B)D.∁U(A∪B)2.若z=sinθ-+(cosθ-)i是纯虚数,则tan(θ-)的值为( )A.-7B.C.7D.-7或3.已知,向量在向量上的投影为,则与的夹角为( )A.B.C.D.4.下列命题中为真命题的是( )A.若B.直线a,b为异面直线的充要条件是直线a,b不相交C.“a=1是“直线x-ay=0与直线x
5、+ay=0互相垂直”的充要条件D.若命题p:”∃x∈R,x2-x-1>0”,则命题p的否定为:”∀x∈R,x2-x-1≤0”5.从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且
6、PM
7、=5,设抛物线的焦点为F,则△MPF的面积为( )A.6B.8C.10D.156.已知函数g(x)=f(x)+x2是奇函数,当x>0时,函数f(x)的图象与函数y=log2x的图象关于y=x对称,则g(-1)+g(-2)=( )A.-7B.-9C.-11D.-137.将函数f(x)=2sin(2x+)的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的倍,所得图象关于直线x=对称,则φ的
8、最小正值为( )A.B.C.D.8.某几何体的三视图如图所示,则该几何体的表面积( )A.πB.2C.(2)πD.(2)π16页1.若log4(3a+4b)=log2,则a+b的最小值是( )A.6+2B.7+2C.6+4D.7+42.如图,棱长为2的正方体ABCD-A1B1C1D1中,点E、F分别为AB、A1B1的中点,则三棱锥F-ECD的外接球体积为( )A.B.C.D.3.椭圆C:与抛物线E:相交于点M,N,过点的直线与抛物线E相切于M,N点,设椭圆的右顶点为A,若四边形PMAN为平行四边形,则椭圆的离心率为 A.B.C.D.4.已知函数f(x)=ln,g(x)=ex-2
9、,若g(m)=f(n)成立,则n-m的最小值为( ).A.1-ln2B.ln2C.2-3D.e2-3二、填空题(本大题共4小题,共20.0分)5.当直线被圆截得的弦最短时,m的值为____________.6.若=,tan(β-2α)=1,则tan(α-β)=______.7.已知双曲线的左右焦点分别为F1,F2,若C上一点P满足,且,则双曲线C的渐近线方程为______.8.如图,矩形ABCD中,AB=2AD=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE,构成四棱锥A1-BCDE,若M为线段A1C的中点,在翻转过程中有如下四个命题:①MB∥平面A1DE;②存在某个位置,
10、使DE⊥A1C;③存在某个位置,使A1D⊥CE;④点A1在半径为的圆周上运动,其中正确的命题是______.三、解答题(本大题共7小题,共82.0分)16页1.已知a,b,c分别为△ABC三个内角A,B,C的对边,cosC+.(Ⅰ)求A;(Ⅱ)若a=,求△ABC周长的取值范围.2.已知在等比数列{an}中,a2=2,a4a5=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和3.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为菱形,AD=2,∠ADC=60°,E,F分别为AD,PC的中点.
11、(1)求证:EF∥平面PAB;(2)点G是线段PD上一动点,若CG与平面PAD所成最大角的正切值为,求二面角G-EC-F的余弦值.4.在直角坐标系xOy中,已知圆C1:x2+y2=r2(r>0)与直线l0:相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点满足,设动点M的轨迹为曲线C16页.(Ⅰ)求曲线C的方程;(Ⅱ)设P,Q是曲线C上两动点,线段PQ的中点为T,OP,OQ的斜率分别为k1,k2,且,求
12、OT
13、的取值范围.1.设函数f(x)=x2-mlnx,h(x)=x2-x+a(Ⅰ)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(Ⅱ)当m=2时,若函数g(x
14、)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.2.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,且曲线C的左焦点F在直线l上.(Ⅰ)若直线l与曲线C交于A、B两点.求
15、FA
16、•
17、FB
18、的值;(Ⅱ)设曲线C的内接矩形的周长为P,求P的最大值.3.已知函数f(x)=
19、2x-a
20、+a.(1)若不等式f
此文档下载收益归作者所有