一元二次不等式及其解法练习及同步练习题含答案07829.doc

一元二次不等式及其解法练习及同步练习题含答案07829.doc

ID:50552397

大小:616.87 KB

页数:7页

时间:2020-03-10

一元二次不等式及其解法练习及同步练习题含答案07829.doc_第1页
一元二次不等式及其解法练习及同步练习题含答案07829.doc_第2页
一元二次不等式及其解法练习及同步练习题含答案07829.doc_第3页
一元二次不等式及其解法练习及同步练习题含答案07829.doc_第4页
一元二次不等式及其解法练习及同步练习题含答案07829.doc_第5页
资源描述:

《一元二次不等式及其解法练习及同步练习题含答案07829.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、(2)、(3)、(4)2、求下列函数的定义域(1)、(2)3、已知集合,求含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。一.二次项系数为

2、常数例1、解关于x的不等式:解:原不等式可化为:(x-1)(x+m)>0(两根是1和-m,谁大?)(1)当1<-m即m<-1时,解得:x<1或x>-m(2)当1=-m即m=-1时,不等式化为:x1(3)当1>-m即m>-1时,解得:x<-m或x>1综上,不等式的解集为:例2:解关于的不等式:(不能因式分解)解:(方程有没有根,取决于谁?)(i)7(ii)两根为,.综上,不等式的解集为:(1)当时,解集为;(2)当时,解集为()();(3)当时,解集为()();(4)当或时,解集为()();二.二次项系数含参数例

3、3、解关于的不等式:解:若,原不等式若,原不等式或若,原不等式其解的情况应由与1的大小关系决定,故(1)当时,式的解集为;(2)当时,式;(3)当时,式.综上所述,不等式的解集为:①当时,{};②当时,{};③当时,{};7④当时,;⑤当时,{}.例4、解关于的不等式:解:(1)当时,(2)当时,此时>0两根为,.解得:(3)当a<0时,原式可化为:①当即时,解集为R;②当即时,解得:;③当即时解得:综上,(1)当时,解集为(,);(2)当时,解集为;(3)当时,解集为()();(4)当时,解集为()().上面

4、四个例子,尽管分别代表了四种不同的类型,但它们对参数都进行了讨论,看起来比较复杂,特别是对参数的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数的分类是根据不等式中二次项系数等于零和判别式时所得到的的值为数轴的分点进行分类,如:解关于的不等式:解:或;7或;当时,且,解集为;当时,且,解集为()();当时,且,解集为()();当时,,解集为();当时,且,解集为(,);当时,,解集为();当时,且,解集为()();当时,且,解集为()();当时,且,解集为.综上,可知当或时

5、,解集为;当时,()();当或时,解集为()();当时,解集为();当时,解集为(,);当时,解集为();当时,解集为()().通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。(二)、检测题一、选择题71、不等式的解集为()A、B、C、D、2、在下列不等式中,解集为的是()A、B、C、D、3、函数的定义域为()A、B、C、D、4、若,则函数()A、有最小值,无最大值B、有最小

6、值,最大值1C、有最小值1,最大值D、无最小值,也无最大值5、若不等式的解集为,则的取值范围是()A.B.C.D.6、不等式的解集是()A.B.C.D.7、不等式的解集是,则()A.B.C.D.二、填空题8、设,且,则的解集为。9、已知集合,若,则实数的取值范围是10、利用,可以求得不等式的解集为。11、使不等式成立的的取值范围是。12、二次函数的部分对应值如下表:则不等式的解集是____________________________.713、已知不等式的解集是,则________.三、解答题14、解关于的不

7、等式15、已知函数,为使的的取值范围。16、已知不等式的解集为A,不等式的解集为B,求。17、已知求a的取值范围。18、设不等式的一切m的值均成立,求x的取值范围。19、解下列不等式(1)(2)1.下列不等式的解集是∅的为(  )A.x2+2x+1≤0        B.≤0C.()x-1<0D.-3>2.若x2-2ax+2≥0在R上恒成立,则实数a的取值范围是(  )A.(-,]B.(-,)C.[-,)D.[-,]3.方程x2+(m-3)x+m=0有两个实根,则实数m的取值范围是________.4.若函数y

8、=的定义域是R,求实数k的取值范围.一、选择题1.已知不等式ax2+bx+c<0(a≠0)的解集是R,则(  )A.a<0,Δ>0B.a<0,Δ<0C.a>0,Δ<0D.a>0,Δ>02.不等式<0的解集为(  )A.(-1,0)∪(0,+∞)B.(-∞,-1)∪(0,1)C.(-1,0)D.(-∞,-1)3.不等式2x2+mx+n>0的解集是{x

9、x>3或x<-2},则二次函数y=2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。