正反比例函数和一次函数二次函数知识点汇总.doc

正反比例函数和一次函数二次函数知识点汇总.doc

ID:50420943

大小:1019.50 KB

页数:7页

时间:2020-03-09

正反比例函数和一次函数二次函数知识点汇总.doc_第1页
正反比例函数和一次函数二次函数知识点汇总.doc_第2页
正反比例函数和一次函数二次函数知识点汇总.doc_第3页
正反比例函数和一次函数二次函数知识点汇总.doc_第4页
正反比例函数和一次函数二次函数知识点汇总.doc_第5页
资源描述:

《正反比例函数和一次函数二次函数知识点汇总.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线一次函数(1)一次函数的性质:y=kx+b(k、b为常数,k≠0)当k>0时,y的值随x的值增大而增大;当k<0时,y的值随x值的增大而减小.⑷.直线y=kx+b(

2、k、b为常数,k≠0)时在坐标平面内的位置与k在的关系.    ①直线经过第一、二、三象限(直线不经过第四象限);    ②直线经过第一、三、四象限(直线不经过第二象限);    ③直线经过第一、二、四象限(直线不经过第三象限);    ④直线经过第二、三、四象限(直线不经过第一象限正比例函数4、正比例函数的性质一般地,正比例函数有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。反比例函数(1)反比例函数如果(k是常数,k≠0),那么y叫

3、做x的反比例函数.(2)反比例函数的图象反比例函数的图象是双曲线.(3)反比例函数的性质①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.③反比例函数图象关于直线y=±x对称,关于原点对称.(4)k的两种求法①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB(5)正比例函数和反比例函数的交点问题若正比例函数y=k1x(k1≠0)

4、,反比例函数,则当k1k2<0时,两函数图象无交点;当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.反比例函数k的符号k>0k<0图像yOxyOx性质①x的取值范围是x0,y的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。①x的取值范围是x0,y的取值范围是y0;②当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x的增大而增大。一元二次函数知识点汇总1.定义:一般地,如果是常数,,

5、那么叫做的一元二次函数.2.二次函数的性质(1)抛物线的顶点是原点,对称轴是轴.(2)函数的图像与的符号关系:①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点3.二次函数的图像是对称轴平行于(包括重合)轴的抛物线.4.二次函数用配方法可化成:的形式,其中.5.抛物线的三要素:开口方向、对称轴、顶点.①决定抛物线的开口方向:当时,开口向上;当时,开口向下;越小,抛物线的开口越大,越大,抛物线的开口越小。②对称轴为平行于轴(或重合)的直线,记作.特别地,轴记作直线.③定点是抛物线的最值点[最大值(时)

6、或最小值(时)],坐标为(,)。6.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方法将抛物线的解析式化为的形式,得到顶点为(,),对称轴是.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相等的两个点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★7.抛物线中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的

7、对称轴是直线,故:①时,对称轴为轴;②时,对称轴在轴左侧;③时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时仍成立.如抛物线的对称轴在轴右侧,则.8.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.图像特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0,)(,0)(,)()9.用待定系数法求二次函数的解析式(1)一般式:

8、.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.10.直线与抛物线的交点(或称二次函数与一次函数关系)(1)轴与抛物线得交点为()(2)与轴平行的直线与抛物线有且只有一个交点(,).(3)抛物线与轴的交点二次函数的图像与

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。